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ABSTRACT 

The Keck II Laser Guide Star (LGS) Adaptive Optics (AO) System was upgraded from a dye laser to a 
TOPTICA/MPBC Raman-Fibre Amplification (RFA) laser in December 2015. The W. M. Keck Observatory (WMKO) 
has been operating its AO system with a LGS for science since 2004 using a first generation 15 W dye laser. Using the 
latest diode pump laser technology, Raman amplification, and a well-tuned second harmonic generator (SHG), this Next 
Generation Laser (NGL) is able to produce a highly stable 589 nm laser beam with the required power, wavelength and 
mode quality. The beam’s linear polarization and continuous wave format along with optical back pumping are designed 
to improve the sodium atom coupling efficiency over previously operated sodium-wavelength lasers. The efficiency and 
operability of the new laser has also been improved by reducing its required input power and cooling, size, and the 
manpower to operate and maintain it. 

The new laser has been implemented on the telescope’s elevation ring with its electronics installed on a new Nasmyth 
sub-platform, with the capacity to support up to three laser systems for future upgrades. The laser is projected from 
behind the telescope’s secondary mirror using the recently implemented center launch system (CLS) to reduce LGS spot 
size. We will present the new laser system and its performance with respect to power, stability, wavelength, spot size, 
optical repumping, polarization, efficiency, and its return with respect to pointing alignment to the magnetic field. 
Preliminary LGSAO performance is presented with the system returning to science operations. We will also provide an 
update on current and future upgrades at the WMKO. 
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1 INTRODUCTION 

The Keck II LGS AO system (Wizinowich et al. [1]) has been in operation since 2004 using a dye laser developed by 
Lawrence Livermore National Laboratory (Friedman et al. [2]). This first generation dye laser (DL) and its side launch 
propagation system (SLS) have been responsible for an estimated 14,000 hours of science operations. Results using this 
laser and the LGS AO system supported 246 refereed science papers through 2015 (Wizinowich [3]). In 2010, a second 
generation solid state laser was developed by Lockheed Martin Coherent Technology (Lee et al. [4]) and installed on the 
Keck I telescope. This laser used the sum frequency generation technique of mixing two laser wavelengths, 1064 nm and 
1319 nm, to generate the 589 nm sodium wavelength. Both of these lasers tend to require significant manpower and 
resources to maintain and operate. In the fall of 2014, Keck received a TOPTICA Photonics AG and MPB 
Communications (MPBC) laser (Friendenauer et al. [5]) using RFA. This laser was developed by a guide star consortium 
comprised of the European Southern Observatory (ESO), WMKO and the Thirty Meter Telescope with 
TOPTICA/MPBC as the contractors. This third generation laser was tested and integrated on the Keck II telescope in 
2015 with the CLS. Commissioning was conducted in the first quarter of 2016 with the LGS AO system going back into 
science mode in April of 2016. 

This third generation laser produces significantly more return than the previous dye and solid state lasers. The laser’s 
intrinsic performance at the Maunakea site, Hawaii is examined in detailed, along with its operations model and 
maintenance. Challenges with the laser and the CLS are discussed and their impact on operations. The laser’s on-sky 
performance is presented as compared to the previous two generations of laser with a focus on the dye laser. Since the 
new laser system  has only been in science operation as of April 2016 only preliminary science data is provided. A quick 
look is provided of other recent AO upgrades and how they fit into the planned AO upgrades at the observatory. 
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2 NGL SYSTEM OVERVIEW 

The Keck II NGL system design review was held in April 2013. The TOPTICA/MPBC laser reviews were conducted 
separately with the LGS consortium. The preliminary design was held one year later followed by the detailed design in 
November 2014. The NGL system builds on the center launch system’s commissioning in the spring of 2014 (Chin et al. 
[6]). The CLS beam transport system was integrated on the Keck II telescope using the dye laser initially and then 
subsequently with the NGL. The Keck I laser also has a similar CLS type beam transport, although more challenging due 
to the fixed gravity orientation of the laser mounted on the Nasmyth platform. The Keck I LGSAO system was 
completed in 2012 (Chin et al. [7]). The CLS reduces the spot elongation by projecting the laser beam from behind the 
telescope’s secondary mirror. A negative impact of the CLS, as compared to the side launch system, is a throughput loss 
due to 19 additional optical elements in the Keck II beam transport system. 

The NGL project’s primary objective was to replace the DL with a TOPTICA/MPBC laser and integrate the necessary 
subsystems and infrastructure to support the new laser. The subsystems include a new platform on the telescope for the 
laser, infrastructure systems (power and cooling), an upgraded safety system, mechanical mounting and an optics bench 
to steer the laser into the beam train, motion control electronics, and software. The NGL system was integrated with the 
existing LGSAO system and instruments. The commissioning and prime science camera is the Near Infrared Camera II 
(NIRC2). For future considerations, the system was also designed to include all infrastructures necessary to support two 
additional TOPTICA/MPBC lasers as part of the Keck’s proposed Next Generation Adaptive Optics System (NGAO; 
Wizinowich et al. [8]). 

Figure 1: Schematic diagram of the K2 NGL system with the CLS (left); the laser table enclosure and laser head on the 
telescope’s elevation ring (top right); the laser platform housing the laser electronics cabinet and laser heat exchanger 
(bottom right). 
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ring which flexes in both azimuth and elevation. Without closed 
loop control, the beam can move as much as 19 mm in the beam 
train at various mirrors (Chin et al. [6]). The LTE also provides 
one of three safety shutter controls in the beam train. The amount 
of power exiting the LTE is controlled via a ½ waveplate (WP) 
that rotates the linearly polarized light and a thin film linear 
polarizer (TFP) that reflects part of the light into a beam dump. 
The laser itself has power adjustment with a range of 16 to 22 W; 
the WP/TFP combination allows low power (≥ 1 W) levels for 
alignment purposes. Unused laser power from the shutter mirrors 
or during alignment is removed via glycol cooled beam dumps. A 
quarter WP converts the laser’s linear polarization to circular 
polarization to maximize sodium return.  

Diagnostics in the LTE are used to monitor the beam’s performance and wavelength. Three mirrors, with position 
diagnostics, ensure the laser beam’s pointing and centering alignment into the beam train. The TOPTICA/MPBC LH has 
an option to include output steering mirrors to support non-real time alignment purposes; these motors were measured to 
have a resolution of 0.0125 to 0.013 µrad per step. A Shack-Hartmann camera on the LTE can be used to examine the 
laser’s beam quality. In addition to the laser’s internal wave meter, a sodium cell independently verifies the wavelength 
without the need to go on sky. The LTE also includes a surrogate laser for basic alignment checks if the sodium laser is 
not available; this laser hasn’t been required. The LTE and its mounting frame’s physical dimensions are sufficiently 
sized to support two additional LH in the future. 

2.3 Laser Safety and Safety System 

The TOPTICA laser operates as a class IV laser system and complies with the IEC 60825-1 Part 5 Manufacturer’s 
Checklist. The requirement for a laser safety system (LSS) to operate with the TOPTICA laser is guided by ANSI 
standards Z136.1 Safe Use of Laser for Indoors and Z136.6 Safe Use of Laser for Outdoors. This guidance ensures 
personnel and equipment safety via engineering (interlocks) and procedural controls. The previous LSS was upgraded 
for obsolescence as part of the NGL project with an Allen Bradley SLC500 Programmable Logic Controller (PLC). To 
ensure there is no dependency on any network, the LSS runs independently with a hardware interface directly to the 
laser. The laser itself has an internal PLC to maintain internal safety. The NGL PLC monitors and controls the critical 
functionalities such as safety shutters in the beam train to prevent unintended radiation exposure. It also serves to gather 
the necessary permissives that permit the propagation of the beam onto the mesosphere. These permissives include the 
satellite and aircraft avoidance, beam avoidance of other telescope’s observing paths, telescope and dome positions, 
beam pointing accuracies, and the general health of the laser and associated subsystems. Loss of communication 
heartbeats among systems signals a lack of control, resulting in shutter closures. 

2.4 Laser Software and Interface 

The software architecture for the laser is shown in Figure 4. A single Linux server controls and communicates with the 
laser, safety system, CLS beam train motion electronics, environmental monitoring, and other subsystems on the 
observatory network. The server runs Red Hat Enterprise Edition 7 in the observatory’s EPICS software environment. 
This allows all other clients such as the AO system and instruments to control and access laser status via keywords. A 
graphical user interface (GUI) called the CLS Sequencer (Figure 5) provides user control of the beam train as well as the 
laser. This interface depicts a physical layout of the laser and components within the beam train. Real time operating 
parameters and status are provided over each component icon. Operational controls of the laser modes and beam train 
components can all be performed with this single GUI. In addition to the four operational modes of the laser 
(STANDBY, READY, ON, OBSERVATION), advanced laser parameters such as wavelength, power, and repumping 
can be accessed via pull down menu/screens. Critical laser parameters and control are provided via the laser service 
software on a laptop. Inter subsystem communications status are provided via colored LEDs to inform the user of faults. 
A separate visual and audio alarm system informs the user of faults and provides guidance for recovery. The Linux 
server also serves as a repository of data logging by the EPICS system as well as logs from the TOPTICA service laptop. 
Laser parameters can be logged with the EPICS system using channel monitoring via TCPIP. 

Figure 3: Laser Table Enclosure components.
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2.5 Laser Service Software Interface 

The TOPTICA/MPBC laser is delivered with a Windows laptop running TOPTICA service software (TSS, Figure 6) to 
communicate with the laser directly via TCPIP. For normal night time operations, the laptop is not used and is not 
required to operate with the laser. All controls are done by the telescope operator using the CLS Sequencer. The TSS has 
extensive controls and viewing of internal laser parameters. Each laser subsystem has a panel to command operational 
set points and view status. To ensure safety, the software has three levels of controls, NORMAL, MAINTENANCE, and 
SERVICE. Each level provides the user with control features which can bypass interlocks. Only trained technicians or 
engineers are permitted to operate the TSS. To support troubleshooting, the software provides constant logging of 
parameters and history. Status and transition history are located on two panes in the software. To minimize memory 
usage, the logs are transfer to the Linux server daily. The TSS also includes non TOPTICA software to examine internal 
system components such as the Siemens PLC and MPBC’s diode pump system. Together with plotting and logging, the 
user is easily able to troubleshoot and identify problems. 

Figure 4: Laser Software Architecture 

Figure 5: Keck CLS Sequencer user 
interface.

Figure 6: TOPTICA laser service 
software interface. 

3 LASER PERFORMANCE 

The laser’s performance and functional acceptance testing were completed in four phases. The first phase of testing was 
conducted at the factory in Germany in September of 2014. All specifications and requirements were verified at the 
factory. The second phase was testing of the laser at the Keck headquarters in an environmentally controlled laboratory 
to more closely simulate the summit temperature environment (0 ºC); due to high humidity at the Keck headquarters, the 
system was operated at 9.2 ºC to prevent condensation. The laser was then transferred onto the Keck II telescope for 
testing in the dome operating environment; humidity is normally < 30% at the summit of Maunakea. In this third phase, 
the HEX, EC, and the LH were all located on the newly installed laser platform. The LH/LTE which replaces the DL 
amplifier optical bench on the elevation ring was not installed into their final configuration since the DL had not yet 
been decommissioned. The laser platform testing was completed in September, 2015. In the final phase, the dye laser 
was removed and replaced with the LH/LTE for the final commissioning. The risks at this point were minimal as the 
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requirement. The wavefront error is measured to be 29 nm rms with the dominant error term being defocus; this is less 
than half of the specified wavefront error requirement. Although this is the largest term, the beam remains well 
collimated in the beam train at 20 m from the laser source. A pair of lenses is used just before the launch telescope to 
expand the beam and account for any focus adjustments to minimize the laser spot size on the sky. A model is also 
applied to the lens pair to account for launch telescope changes due to elevation angle and temperature.  

3.4 Laser Power Usage 

One key advantages of the NGL is its efficiency and ease of operation. As compared to dye laser operation, the NGL has 
significantly reduced human and infrastructure resources needs. The TOPTICA laser (North American version) uses 3-
phase 208 VAC as its primary input voltage. An uninterruptable power supply is used to minimize power fluctuations 
and disruptions. Unlike the dye laser which consumed 50 kW of power and required an additional 30 kW to remove the 
heat from the facility, the NGL consumes significantly less power and requires much less heat removal. Table 1 shows 
the TOPTICA laser power usage in its operating states excluding the HEX. The power used by the laser is less than a 
typical observatory instrument. HEX power consumption is highly dependent on the pump speed necessary to provide 
the required flow to the EC and LH. The HEX, which includes the pump, consumes 0.39 kVA. This power does not 
include the 2 kW heaters in the HEX and LH to maintain the coolant and LH temperatures when the laser is powered 
OFF.  The required power to drive the diodes can also increase by a factor of 2 during the lifetime of the diodes. 

Table 1: Laser power consumption based on the 
various states of the laser 

Transitions Time (sec) 
Standby to Ready 3 
Ready to On 195 
Ready to On with 
wavelength calibration 

2895 

On to Observation 9 

Table 2: Laser transition times. There is a 5 sec preset 
delay for the shutter to open in the observation mode. 

3.5 Laser Control and Transition Times 

The TOPTICA/MPBC laser is much simpler to operate than the previous dye laser. The laser has four states/modes of 
operations. The system is in OFF mode when there is no power to the EC. Heaters in the LH and HEX are used to 
maintain temperatures even when there is no power to the EC. Once power is applied to the EC, the laser goes to the 
STBY mode. It takes about 5 minutes for controllers within the laser to connect with the observatory interface awaiting 
further commands. Once the connection is made, the laser is commanded to the READY state. In this transition, the laser 
closes internal loops prior to turning ON the diodes. If necessary, the seed laser is calibrated at this time. A 240 hour 
timer is used to determine wavelength calibration intervals. Once in the READY state, the laser diodes are enabled 
transitioning to the ON state. In the final transition to the OBSERVATION (OBS) state, the laser output shutter is 
opened. The laser can be commanded from OFF to OBS in a single command without user intervention as long as 
temperatures and power levels within the laser are in acceptable ranges. The time to transition each state is shown in 
Table 2. The transition timing assumes the laser has been in the STANDBY state, allowing it to thermalize from the day 
prior. All of the controls and system monitoring can be done remotely by the laser technician. 

4 LASER ON-SKY PERFORMANCE 

The NGL system first light was on December 1, 2015. On-sky engineering and commissioning followed with LGSAO 
science operations with the new laser returning on April 15, 2016. During this period, the laser was on sky for 7 nights 
with 1.5 of the 7 nights lost due to weather. The test data below are from the on-sky testing and subsequent science 
nights. The performance data is also compared to the Keck II dye laser center and side launch and to the Keck I solid 
state laser center launch. 

4.1 Sodium Return Brightness 

The TOPTICA laser format was designed to optimize the photon return from the sodium layer. The laser’s power, 
continuous wave format, narrow line width, optical pumping of the D2b sodium line and linear polarization are all factors 
in improving the sodium return. The return is also dependent on the laser pointing direction with respect to the earth’s 

kW kVA
Standby 0.19 0.29 0.64
Ready 0.19 0.29 0.64
On 0.54 0.6 0.9
Observation 0.55 0.61 0.89

Power
Mode Power Factor
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while it is OFF. If the coolant is not warm enough, it has the undesirable effect of cooling the system as coolant is 
flowed through the system. The combination of these two heaters reduces the time to turn the laser ON to 6 hours. Once 
the diodes are turned ON, it takes an additional hour for all system temperatures to stabilize.  

6.3 Ongoing Health Checks and Preventative Maintenance 

A key advantage of the TOPTICA laser is its ability to continuously monitor system health during operations. More 
intensive offline health checks are also run periodically. The combination of these real time and offline health checks 
inform the user of any impending problems and to plan for appropriate actions. An example of this would be a possibly 
failing diode requiring attention or excessive stimulated Brillouin scattering in the fiber. Laser operational parameters 
are logged by the laser and can be retrieved remotely for analysis. Preventative maintenance is completed by the laser 
technician for both the laser itself and infrastructure equipment. Beam train optics maintenance, coolant filters and 
levels, vibration isolators, safety system interlocks, and generally cleanliness are verified periodically. 

6.4 Operations Model and Staffing 

To overcome the cold start warm up period, power is turned ON to the system one day before the laser run allowing the 
laser to athermalize. Power is applied to the laser in the STANDBY state; but not to the diodes. This significantly 
reduces the startup of the laser from hours to minutes as shown in Table 2. For a normal LGSAO night, the technician 
turns on the laser OBSERVATION mode in the afternoon to ensure the laser’s functionalities and verify the CLS 
alignment. These checks ensure the laser and the beam train devices are operational and the laser beam looks acceptable 
on the beam train cameras. On the first day of a LGSAO run, the beam is propagated onto the dome wall to check for 
symmetry. This verifies the beam train has not been compromised by activities on the telescope between laser runs. The 
laser wavelength is calibrated as needed based on run time. Currently, calibrations are completed approximately once per 
month; longer term historical data may dictate a different frequency. The laser is returned to a READY state after the 
checkout to reduce diode usage and the laser is turned back to OBSERVATION mode just minutes before propagating 
on-sky. The laser is put back into its STBY mode via a script at the end of the observing night. Other afternoon activities 
include verification of systems related to on-sky propagation such as the aircraft detection system to simulate an 
oncoming aircraft, the laser traffic control system, and the satellite avoidance tool. Most of the above activities can be 
done remotely. 

The estimated effort to operate the laser for 140 nights per year is ~ 0.25 Full Time Equivalents (FTE). Additional effort 
is spent to monitor laser parameters in this initial phase of operations to ensure there is no degradation of the system. In 
addition, a technician spends ~ 0.25 FTE to support maintenance of the laser and associated subsystems. 

6.5 Operations Uptime 

The TOPTICA laser operated for 121 hours between April 15 and May 23, 2016 for science operations. Since this 
period, there has only been one incident of failure related to the laser which resulted in 5.6 hours of lost time or 4.6% of 
the observing time. The NGL system, including the laser, has a lost time percentage of 4.8% compared to the 
requirement of 1.5%. This single incident was due to an intermittent failure of the wave meter used to lock the seed laser 
wavelength. The wave meter was unable to sense the wavelength, causing erratic behavior and a significant power drop 
in the second harmonic generation cavity; the wave meter started working again without any changes. The wave meter is 
now carefully monitored for any future issues. A work around has also been developed with TOPTICA to operate the 
laser in open loop if necessary for future failures. A sodium cell in the LTE can be used to optimize the wavelength 
manually. 

7 ADAPTIVE OPTICS UPGRADES AND ACTIVITIES 

Keck Observatory’s 2016 scientific strategic plan continues to emphasize the importance of high spatial resolution 
science. The Keck AO systems have been developed for high Strehl ratios with good sky coverage. This direction will 
continue to be pushed with higher Strehl ratios and higher sky coverage. The new Keck II laser and laser center launch 
system were developed in support of decreasing the high order measurement and bandwidth errors and hence increasing 
the Strehl ratio. The Keck I near-infrared tip-tilt sensor was developed in support of higher sky coverage and we are 
continuing to develop this sensors capabilities into areas such as multiple tip-tilt stars to reduce tip-tilt anisoplanatism 
(Femenia-Castella et al., [16]) and the use of focal plane sensing to provide fast focus measurements (Plantet et al., [17]). 
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The next major proposed steps for the Keck II LGS AO system build on the new laser by splitting the laser into multiple 
beacons in order to perform tomography and thereby increase the Strehl ratio by reducing the focal anisoplanatism error, 
and on the Keck I tip-tilt sensor by implementing a Keck II near-infrared tip-tilt sensor to improve sky coverage 
(Wizinowich et al., [18]). 

Quantitative high spatial resolution science also relies on knowledge of the point spread function (PSF). Two PSF 
reconstruction (PSF-R) demonstration efforts using Keck AO science data, AO telemetry and atmospheric profiler data 
are nearing fruition. The on-axis PSF-R effort is reported on by Ragland et al. [19]. The off-axis PSF-R efforts are 
reported on by Witzel et al. [20], Do et al. [21] and Sitarski et al. [22]. The next step, planned to begin in 2017, is to turn 
these demonstrations into a PSF-R facility that provides a PSF estimate anywhere in the science field for every AO 
science observation.  

Keck AO with the NIRC2 and OSIRIS science instruments has proven to be very useful for exoplanet imaging and 
characterization. The role of Keck AO in this field has recently been enhanced with the installation and commissioning 
of an L-band vortex coronagraph focal plane mask in the NIRC2 science instrument (Femenia-Castella et al., [23]). The 
next step being undertaken as part of a phased approach to implementing the Keck Planet Imager and Characterizer 
(KPIC; Mawet, [24]) will be to integrate a single mode fiber injection unit on the Keck II AO bench to feed the 
NIRSPEC science instrument; the fiber injection unit includes a pupil plane where apodizers can be installed (Ruane et 
al., [25]). A proposal for a near-infrared pyramid wavefront sensor has been submitted that would support NGS AO 
science observations with both NIRC2 and the fiber injection unit (Wizinowich, [26]). A proposal for a coronagraph 
module has also been submitted which would include a MEMS deformable mirror in a pupil plane and a focal plane 
coronagraph mask, which would be installed just before the fiber injection unit.  

The OSIRIS science instrument has recently been upgraded by replacing its spectrograph detector with an H2RG 
detector. The OSIRIS imager optical system and detector will also be upgraded in early 2017 (Witzel et al., [27]). A 
NIRSPEC detector upgrade is also in progress and a proposal to implement a precision radial velocity (PRV) capability 
with NIRSPEC has been submitted. The NIRSPEC PRV mode would be fed with a single mode fiber from the Keck II 
AO system; both NGS and LGS AO observations would be supported.  

A number of modest AO performance and maintenance upgrades are underway in support of all AO observations. Semi-
static low order structure in the first airy ring of the AO-corrected PSF has recently been traced to correlated low order 
piston errors in the segmented primary mirror and we intend to reduce or characterize this contribution to the PSF. The 
Keck AO benches tend to operate 5 to 10 ˚C warmer than the dome temperature and we are working to reduce the bench 
temperatures in order to reduce the resultant emissivity. The Keck II low bandwidth (truth) wavefront sensor camera has 
been recently replaced with a faster readout camera and the 5x5 mode of this system will be made more fully operational 
to allow for faster updates. The Keck II AO acquisition camera will be replaced with a newer camera in 2017 and we 
will use this opportunity to look at also making this a science camera.  

The Observatory also intends to begin studying the scientific utility of ground layer AO for Keck science and to 
determine the feasibility of using existing multi-object spectrographs (DEIMOS, LRIS and/or MOSFIRE) with this 
mode. 

8 CONCLUSIONS 

The operational use of LGS for AO has been a great success and driver for science and publications at the W. M. Keck 
Observatory in the last decade. The addition of a Raman fiber laser, along with the recent center launch system, will 
allow continued success as the observatory moves toward its goal of higher Strehl ratios and higher sky coverage. The 
laser has demonstrated its ability to operate as a facility class instrument and the sodium returns are matching well with 
the Bloch Equations to first order and with other observatories using similar format lasers. With the higher sodium 
returns, the LGSAO system’s measurement and the bandwidth errors can be reduced; the limiting factor is in the 
wavefront sensing and controller and not from sodium returns. The high return also positions WMKO to take the next 
step of using multiple LGS for laser tomography.  
 
The TOPTICA laser also simplifies the laser operations model for observatories. The efficiency gained by minimizing 
infrastructure and manpower requirements allows the laser to behave as another typical instrument, unlike its 
predecessors. The minimal time frame to start the laser at thermal equilibrium and ease of operations will also assist the 
observatory in supporting time domain astronomy and unattended night time operations.  
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