30 research outputs found

    Ambient BTEX exposure and mid-pregnancy inflammatory biomarkers in pregnant African American women

    Get PDF
    Air pollution is associated with preterm birth (PTB), potentially via inflammation. We recently showed the mixture benzene, toluene, ethylbenzene, and xylene (BTEX) is associated with PTB. We examined if ambient BTEX exposure is associated with mid-pregnancy inflammation in a sample of 140 African-American women residing in Detroit, Michigan. The Geospatial Determinants of Health Outcomes Consortium study collected outdoor air pollution measurements in Detroit; these data were coupled with Michigan Air Sampling Network measurements to develop monthly BTEX concentration estimates at a spatial density of 300 m(2). First trimester and mid-pregnancy BTEX exposure estimates were assigned to maternal address. Mid-pregnancy (mean 21.3 ± 3.7 weeks gestation) inflammatory biomarkers (high-sensitivity C-reactive protein, interleukin [IL]-6, IL-10, IL-1β, and tumor necrosis factor-α) were measured with enzyme immunoassays. After covariate adjustment, for every 1-unit increase in first trimester BTEX, there was an expected mean increase in log-transformed IL-1β of 0.05 ± 0.02 units (P = 0.014) and an expected mean increase in log-transformed tumor necrosis factor-α of 0.07 ± 0.02 units (P = 0.006). Similarly, for every 1-unit increase in mid-pregnancy BTEX, there was a mean increase in log IL-1β of 0.06 ± 0.03 units (P = 0.027). There was no association of either first trimester or mid-pregnancy BTEX with high-sensitivity C-reactive protein, IL-10, or IL-6 (all P \u3e 0.05). Ambient BTEX exposure is associated with inflammation in mid-pregnancy in African-American women. Future studies examining if inflammation mediates associations between BTEX exposure and PTB are needed

    Drone-based Water Sampling and Characterization of Three Freshwater Harmful Algal Blooms in the United States

    Get PDF
    Freshwater harmful algal blooms (HABs), caused mostly by toxic cyanobacteria, produce a range of cyanotoxins that threaten the health of humans and domestic animals. Climate conditions and anthropogenic influences such as agricultural run-off can alter the onset and intensity of HABs. Little is known about the distribution and spread of freshwater HABs. Current sampling protocols in some lakes involve teams of researchers that collect samples by hand from a boat and/or from the shoreline. Water samples can be collected from the surface, from discrete-depth collections, and/or from depth-integrated intervals. These collections are often restricted to certain months of the year, and generally are only performed at a limited number of collection sites. In lakes with active HABs, surface samples are generally sufficient for HAB water quality assessments. We used a unique DrOne Water Sampling SystEm (DOWSE) to collect water samples from the surface of three different HABs in Ohio (Grand Lake St Marys, GLSM and Lake Erie) and Virginia (Lake Anna), United States in 2019. The DOWSE consisted of a 3D-printed sampling device tethered to a drone (uncrewed aerial system, or UAS), and was used to collect surface water samples at different distances (10–100 m) from the shore or from an anchored boat. One hundred and eighty water samples (40 at GLSM, 20 at Lake Erie, and 120 at Lake Anna) were collected and analyzed from 18 drone flights. Our methods included testing for cyanotoxins, phycocyanin, and nutrients from surface water samples. Mean concentrations of microcystins (MCs) in drone water samples were 15.00, 1.92, and 0.02 ppb for GLSM, Lake Erie, and Lake Anna, respectively. Lake Anna had low levels of anatoxin in nearly all (111/120) of the drone water samples. Mean concentrations of phycocyanin in drone water samples were 687, 38, and 62 ppb for GLSM, Lake Erie, and Lake Anna, respectively. High levels of total phosphorus were observed in the drone water samples from GLSM (mean of 0.34 mg/L) and Lake Erie (mean of 0.12 mg/L). Lake Anna had the highest variability of total phosphorus with concentrations that ranged from 0.01 mg/L to 0.21 mg/L, with a mean of 0.06 mg/L. Nitrate levels varied greatly across sites, inverse with bloom biomass, ranging from below detection to 3.64 mg/L, with highest mean values in Lake Erie followed by GLSM and Lake Anna, respectively. Drones offer a rapid, targeted collection of water samples from virtually anywhere on a lake with an active HAB without the need for a boat which can disturb the surrounding water. Drones are, however, limited in their ability to operate during inclement weather such as rain and heavy winds. Collectively, our results highlight numerous opportunities for drone-based water sampling technologies to track, predict, and respond to HABs in the future

    Drone-based water sampling and characterization of three freshwater harmful algal blooms in the United States

    Get PDF
    Freshwater harmful algal blooms (HABs), caused mostly by toxic cyanobacteria, produce a range of cyanotoxins that threaten the health of humans and domestic animals. Climate conditions and anthropogenic influences such as agricultural run-off can alter the onset and intensity of HABs. Little is known about the distribution and spread of freshwater HABs. Current sampling protocols in some lakes involve teams of researchers that collect samples by hand from a boat and/or from the shoreline. Water samples can be collected from the surface, from discrete-depth collections, and/or from depth-integrated intervals. These collections are often restricted to certain months of the year, and generally are only performed at a limited number of collection sites. In lakes with active HABs, surface samples are generally sufficient for HAB water quality assessments. We used a unique DrOne Water Sampling SystEm (DOWSE) to collect water samples from the surface of three different HABs in Ohio (Grand Lake St Marys, GLSM and Lake Erie) and Virginia (Lake Anna), United States in 2019. The DOWSE consisted of a 3D-printed sampling device tethered to a drone (uncrewed aerial system, or UAS), and was used to collect surface water samples at different distances (10–100 m) from the shore or from an anchored boat. One hundred and eighty water samples (40 at GLSM, 20 at Lake Erie, and 120 at Lake Anna) were collected and analyzed from 18 drone flights. Our methods included testing for cyanotoxins, phycocyanin, and nutrients from surface water samples. Mean concentrations of microcystins (MCs) in drone water samples were 15.00, 1.92, and 0.02 ppb for GLSM, Lake Erie, and Lake Anna, respectively. Lake Anna had low levels of anatoxin in nearly all (111/120) of the drone water samples. Mean concentrations of phycocyanin in drone water samples were 687, 38, and 62 ppb for GLSM, Lake Erie, and Lake Anna, respectively. High levels of total phosphorus were observed in the drone water samples from GLSM (mean of 0.34 mg/L) and Lake Erie (mean of 0.12 mg/L). Lake Anna had the highest variability of total phosphorus with concentrations that ranged from 0.01 mg/L to 0.21 mg/L, with a mean of 0.06 mg/L. Nitrate levels varied greatly across sites, inverse with bloom biomass, ranging from below detection to 3.64 mg/L, with highest mean values in Lake Erie followed by GLSM and Lake Anna, respectively. Drones offer a rapid, targeted collection of water samples from virtually anywhere on a lake with an active HAB without the need for a boat which can disturb the surrounding water. Drones are, however, limited in their ability to operate during inclement weather such as rain and heavy winds. Collectively, our results highlight numerous opportunities for drone-based water sampling technologies to track, predict, and respond to HABs in the future

    Monitoring Cyanotoxin Production in the Western Basin of Lake Erie Using SPATT

    No full text
    The array of toxins and toxin concentrations produced by cyanobacteria in lakes may change on time scales that are too short to be adequately characterized by typical weekly water samples. We explored the use of Solid Phase Adsorption Toxin Tracking (SPATT) to provide a continuous profile of cyanobacterial toxin production in western Lake Erie. SPATT devices contain porous resin that passively adsorbs toxins over days or weeks potentially useful for detecting short-lived spikes in toxin levels, and unusual toxins and congeners. SPATT bags were deployed at two locations for durations of one and two weeks June-October, 2020. Grab samples for microcystin (MC) concentrations via ELISA and samples for qPCR analysis were collected weekly. SPATT bags were analyzed for 12 MC congeners, anatoxin-a (\u3c0.11 ppb), and cylindrospermopsin

    Cyanobacteria and Cyanotoxins Occurrence and Removal from Five High-Risk Conventional Treatment Drinking Water Plants

    No full text
    An environmental protection agency EPA expert workshop prioritized three cyanotoxins, microcystins, anatoxin-a, and cylindrospermopsin (MAC), as being important in freshwaters of the United States. This study evaluated the prevalence of potentially toxin producing cyanobacteria cell numbers relative to the presence and quantity of the MAC toxins in the context of this framework. Total and potential toxin producing cyanobacteria cell counts were conducted on weekly raw and finished water samples from utilities located in five US states. An Enzyme-Linked Immunosorbant Assay (ELISA) was used to screen the raw and finished water samples for microcystins. High-pressure liquid chromatography with a photodiode array detector (HPLC/PDA) verified microcystin concentrations and quantified anatoxin-a and cylindrospermopsin concentrations. Four of the five utilities experienced cyanobacterial blooms in their raw water. Raw water samples from three utilities showed detectable levels of microcystins and a fourth utility had detectable levels of both microcystin and cylindrospermopsin. No utilities had detectable concentrations of anatoxin-a. These conventional plants effectively removed the cyanobacterial cells and all finished water samples showed MAC levels below the detection limit by ELISA and HPLC/PDA

    The missing middle – Investigating a North American metalimnetic cyanobacteria layer

    No full text
    While the majority of cyanobacteria research and bloom reports pertain to surficial events, research centred on subsurface cyanobacteria remains understudied. Metalimnetic cyanobacteria layers (MCL) are a subsurface phenomenon forming distinct depth stratum, often going unreported due to their inconspicuous nature, particularly in a North American context. Sunfish Lake (Ontario, Canada) represents a North American lake known for hosting an MCL. Here, we (1) reconstructed long-term cyanobacteria records to establish the changing risk of cyanobacteria blooms; and (2) investigated the spatial distribution of cyanobacteria and toxin-producing potential with real-time monitoring. The sediment record at Sunfish Lake revealed an unprecedented abundance of cyanobacteria in modern times (i.e., 1980s onwards), coinciding with increasingly warmer and wetter climatic conditions in the region. Real-time monitoring (2017) revealed an MCL and subsequent toxin analysis showed that peak toxin production (anabaenopeptin and microcystin) coincided with the MCL. Our findings provide (1) evidence for climate-driven shifts in cyanobacteria abundance and that even incremental alterations in climate signals over short temporal scales can push freshwater lakes towards cyanobacteria dominance; (2) importance of comprehensive monitoring to avoid “missing the middle” due to potential health risks at greater depths

    Dhb Microcystins Discovered in USA Using an Online Concentration LC–MS/MS Platform

    No full text
    Based on current structural and statistical calculations, thousands of microcystins (MCs) can exist; yet, to date, only 246 MCs have been identified and only 12 commercial MC standards are available. Standard mass spectrometry workflows for known and unknown MCs need to be developed and validated for basic and applied harmful algal bloom research to advance. Our investigation focuses on samples taken in the spring of 2018 from an impoundment fed by Oser and Bischoff Reservoirs, Indiana, United States of America (USA). The dominant cyanobacterium found during sampling was Planktothrix agardhii. The goal of our study was to identify and quantify the MCs in the impoundment sample using chemical derivatization and mass spectrometry. Modifying these techniques to use online concentration liquid chromatography tandem mass spectrometry (LC–MS/MS), two untargeted MCs have been identified, [d-Asp3, Dhb7]-MC-LR and tentative [Dhb7]-MC-YR. [Dhb7]-MC-YR is not yet reported in the literature to date, and this was the first reported incidence of Dhb MCs in the United States. Furthermore, it was discovered that the commercially available [d-Asp3]-MC-RR standard was [d-Asp3, Dhb7]-MC-RR. This study highlights a workflow utilizing online concentration LC–MS/MS, high-resolution MS (HRMS), and chemical derivatization to identify isobaric MCs

    Comparative Analysis of Microcystin Prevalence in Michigan Lakes by Online Concentration LC/MS/MS and ELISA

    No full text
    Fast and reliable workflows are needed to quantitate microcystins (MCs), a ubiquitous class of hepatotoxic cyanotoxins, so that the impact of human and environmental exposure is assessed quickly and minimized. Our goal was to develop a high-throughput online concentration liquid chromatography tandem mass spectrometry (LC/MS/MS) workflow to quantitate the 12 commercially available MCs and nodularin in surface and drinking waters. The method run time was 8.5 min with detection limits in the low ng/L range and minimum reporting levels between 5 and 10 ng/L. This workflow was benchmarked by determining the prevalence of MCs and comparing the Adda-ELISA quantitation to our new workflow from 122 samples representing 31 waterbodies throughout Michigan. The frequency of MC occurrence was MC-LA > LR > RR > D-Asp3-LR > YR > HilR > WR > D-Asp3-RR > HtyR > LY = LW = LF, while MC-RR had the highest concentrations. MCs were detected in 33 samples and 13 of these samples had more than 20% of their total MC concentration from MCs not present in US Environmental Protection Agency (US EPA) Method 544. Furthermore, seasonal deviations between the LC/MS/MS and Adda-ELISA data suggest Adda-ELISA cross-reacts with MC degradation products. This workflow provides less than 24-h turnaround for quantification and also identified key differences between LC/MS/MS and ELISA quantitation that should be investigated further

    Natural Microcystis populations reveal the presence and abundance of truncated mcy operons and microcystins: a continuing source of research for water quality research

    No full text
    CyanoHABs are often dominated by Microcystis aeruginosa, which produce microcystins, a class of hepatotoxins that have been studied since the 1950s and have been responsible for drinking water crises in recent years. Microcystin toxicity is influenced by distinct structural elements across related molecules encoded by variant mcy operons. Currently over 270 structural variants have been identified through mass spectroscopy. Here, we present findings of a novel, truncated mcy operon that is at times the most abundant genotype across multiple years of sampling in Microcystis populations of Lake Erie. The partial operon contains truncated mcyA, complete mcyB-C, and is missing mcyD-J genes. Metatranscriptomic analysis revealed that this truncated operon is also transcriptionally active. Furthermore, it was predicted to synthesize tetrapeptide molecules. A compound with the same mass as the predicted tetrapeptide was detected in cyanoHAB samples from western Lake Erie. Current methods fail to detect this molecule or genes responsible for its biosynthesis. The persistence and dominance of this mcy genotype in Lake Erie, which has been intensively studied for decades, suggests that such novel genotypes and compounds may be common in natural populations and highlights the utility of shotgun metagenomics to detect novel and potentially toxic compounds produced by cyanobacteria
    corecore