79 research outputs found

    Potential regulatory phosphorylation sites in a Medicago truncatula plasma membrane proton pump implicated during early symbiotic signaling in roots

    Get PDF
    AbstractIn plants and fungi the plasma membrane proton pump generates a large proton-motive force that performs essential functions in many processes, including solute transport and the control of cell elongation. Previous studies in yeast and higher plants have indicated that phosphorylation of an auto-inhibitory domain is involved in regulating pump activity. In this report we examine the Medicago truncatula plasma membrane proton pump gene family, and in particular MtAHA5. Yeast complementation assays with phosphomimetic mutations at six candidate sites support a phosphoregulatory role for two residues, suggesting a molecular model to explain early Nod factor-induced changes in the plasma membrane proton-motive force of legume root cells

    Medicago PhosphoProtein Database: a repository for Medicago truncatula phosphoprotein data

    Get PDF
    The ability of legume crops to fix atmospheric nitrogen via a symbiotic association with soil rhizobia makes them an essential component of many agricultural systems. Initiation of this symbiosis requires protein phosphorylation-mediated signaling in response to rhizobial signals named Nod factors. Medicago truncatula (Medicago) is the model system for studying legume biology, making the study of its phosphoproteome essential. Here, we describe the Medicago PhosphoProtein Database (MPPD; http://phospho.medicago.wisc.edu), a repository built to house phosphoprotein, phosphopeptide, and phosphosite data specific to Medicago. Currently, the MPPD holds 3,457 unique phosphopeptides that contain 3,404 non-redundant sites of phosphorylation on 829 proteins. Through the web-based interface, users are allowed to browse identified proteins or search for proteins of interest. Furthermore, we allow users to conduct BLAST searches of the database using both peptide sequences and phosphorylation motifs as queries. The data contained within the database are available for download to be investigated at the user’s discretion. The MPPD will be updated continually with novel phosphoprotein and phosphopeptide identifications, with the intent of constructing an unparalleled compendium of large-scale Medicago phosphorylation data

    Argonaut: A web platform for collaborative multi-omic data visualization and exploration

    Get PDF
    Researchers now generate large multi-omic datasets using increasingly mature mass spectrometry techniques at an astounding pace, facing new challenges of Big Data dissemination, visualization, and exploration. Conveniently, web-based data portals accommodate the complexity of multi-omic experiments and the many experts involved. However, developing these tailored companion resources requires programming expertise and knowledge of web server architecture-a substantial burden for most. Here, we describe Argonaut, a simple, code-free, and user-friendly platform for creating customizable, interactive data-hosting websites. Argonaut carries out real-time statistical analyses of the data, which it organizes into easily sharable projects. Collaborating researchers worldwide can explore the results, visualized through popular plots, and modify them to streamline data interpretation. Increasing the pace and ease of access to multi-omic data, Argonaut aims to propel discovery of new biological insights. We showcase the capabilities of this tool using a published multi-omics dataset on the large mitochondrial protease deletion collection

    Charge Reduction Electrospray Mass Spectrometry

    No full text

    Single-Pulse Nanoelectrospray Ionization

    No full text

    Activated Ion-Electron Transfer Dissociation Enables Comprehensive Top-Down Protein Fragmentation

    No full text
    Here we report the first demonstration of near-complete sequence coverage of intact proteins using activated ion-electron transfer dissociation (AI-ETD), a method that leverages concurrent infrared photoactivation to enhance electron-driven dissociation. AI-ETD produces mainly c/z-type product ions and provides comprehensive (77–97%) protein sequence coverage, outperforming HCD, ETD, and EThcD for all proteins investigated. AI-ETD also maintains this performance across precursor ion charge states, mitigating charge-state dependence that limits traditional approaches
    corecore