4 research outputs found

    Recommendations for the use of next-generation sequencing (NGS) for patients with metastatic cancers: a report from the ESMO Precision Medicine Working Group

    Get PDF
    Next-generation sequencing (NGS) allows sequencing of a high number of nucleotides in a short time frame at an affordable cost. While this technology has been widely implemented, there are no recommendations from scientific societies about its use in oncology practice. The European Society for Medical Oncology (ESMO) is proposing three levels of recommendations for the use of NGS. Based on the current evidence, ESMO recommends routine use of NGS on tumour samples in advanced non-squamous non-small-cell lung cancer (NSCLC), prostate cancers, ovarian cancers and cholangiocarcinoma. In these tumours, large multigene panels could be used if they add acceptable extra cost compared with small panels. In colon cancers, NGS could be an alternative to PCR. In addition, based on the KN158 trial and considering that patients with endometrial and small-cell lung cancers should have broad access to anti-programmed cell death 1 (anti-PD1) antibodies, it is recommended to test tumour mutational burden (TMB) in cervical cancers, well- and moderately-differentiated neuroendocrine tumours, salivary cancers, thyroid cancers and vulvar cancers, as TMB-high predicted response to pembrolizumab in these cancers. Outside the indications of multigene panels, and considering that the use of large panels of genes could lead to few clinically meaningful responders, ESMO acknowledges that a patient and a doctor could decide together to order a large panel of genes, pending no extra cost for the public health care system and if the patient is informed about the low likelihood of benefit. ESMO recommends that the use of off-label drugs matched to genomics is done only if an access programme and a procedure of decision has been developed at the national or regional level. Finally, ESMO recommends that clinical research centres develop multigene sequencing as a tool to screen patients eligible for clinical trials and to accelerate drug development, and prospectively capture the data that could further inform how to optimise the use of this technology

    Lessons learned: The first consecutive 1000 patients of the CCCMunich<sup>LMU</sup> Molecular Tumor Board.

    Get PDF
    PURPOSE: In 2016, the University of Munich Molecular Tumor Board (MTB) was implemented to initiate a precision oncology program. This review of cases was conducted to assess clinical implications and functionality of the program, to identify current limitations and to inform future directions of these efforts. METHODS: Charts, molecular profiles, and tumor board decisions of the first 1000 consecutive cases (01/2016-03/2020) were reviewed. Descriptive statistics were applied to describe relevant findings. RESULTS: Of the first 1000 patients presented to the MTB; 914 patients received comprehensive genomic profiling. Median age of patients was 56&nbsp;years and 58% were female. The most prevalent diagnoses were breast (16%) and colorectal cancer (10%). Different types of targeted or genome-wide sequencing assays were used; most of them offered by the local department of pathology. Testing was technically successful in 88%. In 41% of cases, a genomic alteration triggered a therapeutic recommendation. The fraction of patients receiving a tumor board recommendation differed significantly between malignancies ranging from over 50% in breast or biliary tract to less than 30% in pancreatic cancers. Based on a retrospective chart review, 17% of patients with an MTB recommendation received appropriate treatment. CONCLUSION: Based on these retrospective analyses, patients with certain malignancies (breast and biliary tract cancer) tend to be more likely to have actionable variants. The low rate of therapeutic implementation (17% of patients receiving a tumor board recommendation) underscores the importance of meticulous follow-up for these patients and ensuring broad access to innovative therapies for patients receiving molecular tumor profiling

    Bcl-x(L) as prognostic marker and potential therapeutic target in cholangiocarcinoma

    Get PDF
    Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-x(L), Mcl-1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl-2 proteins were analysed in a pan-cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial (n = 1140, CCA n = 72) via RNA-sequencing and transcriptome-based protein activity interference revealing high ranks of CCA for Bcl-x(L) and Mcl-1. Expression of Bcl-x(L), Mcl-1, and Bcl-2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative-RT-PCR. Immunohistochemistry confirmed the upregulation of Bcl-x(L) and Mcl-1 in iCCA tissues. Cell death of CCA cell lines upon treatemnt with specific small molecule inhibitors of Bcl-x(L) (Wehi-539), of Mcl-1 (S63845), and Bcl-2 (ABT-199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl-x(L) induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl-x(L) and Mcl-1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl-2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl-x(L) in CCA depending on the CCA subtype. Collectively, these observations identify Bcl-x(L) as a key protein in cell death resistance of CCA and may pave the way for clinical application

    Bcl-x(L) as prognostic marker and potential therapeutic target in cholangiocarcinoma

    No full text
    Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-x(L), Mcl-1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl-2 proteins were analysed in a pan-cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial (n = 1140, CCA n = 72) via RNA-sequencing and transcriptome-based protein activity interference revealing high ranks of CCA for Bcl-x(L) and Mcl-1. Expression of Bcl-x(L), Mcl-1, and Bcl-2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative-RT-PCR. Immunohistochemistry confirmed the upregulation of Bcl-x(L) and Mcl-1 in iCCA tissues. Cell death of CCA cell lines upon treatemnt with specific small molecule inhibitors of Bcl-x(L) (Wehi-539), of Mcl-1 (S63845), and Bcl-2 (ABT-199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl-x(L) induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl-x(L) and Mcl-1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl-2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl-x(L) in CCA depending on the CCA subtype. Collectively, these observations identify Bcl-x(L) as a key protein in cell death resistance of CCA and may pave the way for clinical application
    corecore