3 research outputs found

    How Varroa Parasitism affects the immunological and nutritional status of the honey bee, Apis mellifera

    Get PDF
    We investigated the effect of the parasitic mite Varroa destructor on the immunological and nutritional condition of honey bees, Apis mellifera, from the perspective of the individual bee and the colony. Pupae, newly-emerged adults and foraging adults were sampled from honey bee colonies at one site in S. Texas, USA. Varroa infested bees displayed elevated titer of Deformed Wing Virus (DWV), suggestive of depressed capacity to limit viral replication. Expression of genes coding three anti-microbial peptides (defensin1, abaecin, hymenoptaecin) was either not significantly different between Varroa-infested and uninfested bees or was significantly elevated in Varroa-infested bees, varying with sampling date and bee developmental age. The effect of Varroa on nutritional indices of the bees was complex, with protein, triglyceride, glycogen and sugar levels strongly influenced by life-stage of the bee and individual colony. Protein content was depressed and free amino acid content elevated in Varroa-infested pupae, suggesting that protein synthesis, and consequently growth, may be limited in these insects. No simple relationship between the values of nutritional and immune-related indices was observed, and colony-scale effects were indicated by the reduced weight of pupae in colonies with high Varroa abundance, irrespective of whether the individual pupa bore Varroa

    Molecular cloning and characterization of Phospholipase C Zeta in equine sperm and testis reveals species-specific differences in expression of catalytically active protein

    No full text
    Oocyte activation at fertilization is brought about by the testis-specific phospholipase C zeta (PLCZ), owing to its ability to induce oscillations in intracellular Ca(2+) concentration ([Ca(2+)](i)). Whereas this is a highly conserved mechanism among mammals, important species-specific differences in PLCZ sequence, activity, and expression have been reported. Thus, the objectives of this research were to clone and characterize the intracellular Ca(2+)-releasing activity and expression of equine PLCZ in sperm and testis. Molecular cloning of equine PLCZ yielded a 1914-bp sequence that translated into a protein of the appropriate size (~73 kDa), as detected with an anti-PLCZ-specific antibody. Microinjection of 1 μg/μl of equine PLCZ cRNA supported [Ca(2+)](i) oscillations in murine oocytes that were of a higher relative frequency than those generated by an equivalent concentration of murine Plcz cRNA. Immunofluorescence revealed expression of PLCZ over the acrosome, equatorial segment, and head-midpiece junction; unexpectedly, PLCZ also localized to the principal piece of the flagellum in all epididymal, uncapacitated, and capacitated sperm. Immunostaining over the acrosome was abrogated after induction of acrosomal exocytosis. Moreover, injection of either sperm heads or tails into mouse oocytes showed that PLCZ in both fractions is catalytically active. Immunohistochemistry on equine testis revealed expression as early as the round spermatid stage, and injection of these cells supported [Ca(2+)](i) oscillations in oocytes. In summary, we report that equine PLCZ displays higher intrinsic intracellular Ca(2+)-releasing activity than murine PLCZ and that catalytically active protein is expressed in round spermatids as well as the sperm flagellum, emphasizing important species-specific differences. Moreover, some of these results may suggest potential novel roles for PLCZ in sperm physiology.Fil: Bedford Guaus, Sylvia J.. Cornell University; Estados UnidosFil: Mc Partlin, L. A. . Cornell University; Estados UnidosFil: Xie, J. . Cornell University; Estados UnidosFil: Westmiller, S. L. . Cornell University; Estados UnidosFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental (i); ArgentinaFil: Roberson, M. S.. Cornell University; Estados Unido
    corecore