1,175 research outputs found

    Maser Flare Simulations from Oblate and Prolate Clouds

    Full text link
    We investigated, through numerical models, the flaring variability that may arise from the rotation of maser clouds of approximately spheroidal geometry, ranging from strongly oblate to strongly prolate examples. Inversion solutions were obtained for each of these examples over a range of saturation levels from unsaturated to highly saturated. Formal solutions were computed for rotating clouds with many randomly chosen rotation axes, and corresponding averaged maser light curves plotted with statistical information. The dependence of results on the level of saturation and on the degree of deformation from the spherical case were investigated in terms of a variability index and duty cycle. It may be possible to distinguish observationally between flares from oblate and prolate objects. Maser flares from rotation are limited to long timescales (at least a few years) and modest values of the variability index (100\lesssim 100), and can be aperiodic or quasi-periodic. Rotation is therefore not a good model for H2_2O variability on timescales of weeks to months, or of truly periodic flares.Comment: 11 pages, 12 figures, accepted for publication in MNRA

    Taxation and control of the Kenyan coffee industry

    Get PDF
    This paper examines the current method of taxation and control of the coffee industry in Kenya and outlines an alternative system aimed at improving the industry's efficiency. Control of the industry has been exercised through a system of acreage quotas which have been fixed since 1963, and taxes have not been made sufficiently sensitive to the wide fluctuations in income in good and bad years. A system of volume control is proposed which incorporates a more flexible system of taxation and should encourage a change in resource allocation to allow production of the desired national coffee output at a lower opportunity cost. The implications of this new system are examined for coffee estates and smallholdings , and the effects on employment and net foreign exchange earnings are discussed

    Arthur Hobson Quinn, Son of Pennsylvania

    Get PDF

    Saturn Plasma Sources and Associated Transport Processes

    Get PDF
    This article reviews the different sources of plasma for Saturn’s magnetosphere, as they are known essentially from the scientific results of the Cassini-Huygens mission to Saturn and Titan. At low and medium energies, the main plasma source is the H2OH2O cloud produced by the “geyser” activity of the small satellite Enceladus. Impact ionization of this cloud occurs to produce on the order of 100 kg/s of fresh plasma, a source which dominates all the other ones: Titan (which produces much less plasma than anticipated before the Cassini mission), the rings, the solar wind (a poorly known source due to the lack of quantitative knowledge of the degree of coupling between the solar wind and Saturn’s magnetosphere), and the ionosphere. At higher energies, energetic particles are produced by energy diffusion and acceleration of lower energy plasma produced by the interchange instabilities induced by the rapid rotation of Saturn, and possibly, for the highest energy range, by contributions from the CRAND process acting inside Saturn’s magnetosphere. Discussion of the transport and acceleration processes acting on these plasma sources shows the importance of rotation-induced radial transport and energization of the plasma, and also shows how much the unexpected planetary modulation of essentially all plasma parameters of Saturn’s magnetosphere remains an unexplained mystery

    Developing a self‐consistent description of Titan's upper atmosphere without hydrodynamic escape

    Full text link
    In this study, we develop a best fit description of Titan's upper atmosphere between 500 km and 1500 km, using a one‐dimensional (1‐D) version of the three‐dimensional (3‐D) Titan Global Ionosphere‐Thermosphere Model. For this modeling, we use constraints from several lower atmospheric Cassini‐Huygens investigations and validate our simulation results against in situ Cassini Ion‐Neutral Mass Spectrometer (INMS) measurements of N 2 , CH 4 , H 2 , 40 Ar, HCN, and the major stable isotopic ratios of 14 N/ 15 N in N 2 . We focus our investigation on aspects of Titan's upper atmosphere that determine the amount of atmospheric escape required to match the INMS measurements: the amount of turbulence, the inclusion of chemistry, and the effects of including a self‐consistent thermal balance. We systematically examine both hydrodynamic escape scenarios for methane and scenarios with significantly reduced atmospheric escape. Our results show that the optimum configuration of Titan's upper atmosphere is one with a methane homopause near 1000 km and atmospheric escape rates of 1.41–1.47 ×10 11 CH 4  m −2 s −1 and 1.08 ×10 14  H 2  m −2 s −1 (scaled relative to the surface). We also demonstrate that simulations consistent with hydrodynamic escape of methane systematically produce inferior fits to the multiple validation points presented here. Key Points The methane homopause is most likely near 1000 km altitude Hydrodynamic escape of methane is not required to match INMS Molecular hydrogen is best fit with a methane homopause of 1000 kmPeer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/108005/1/jgra51076.pd

    Validity of the Working Alliance Inventory Within Child Protection Services

    Get PDF
    The Working Alliance Inventory remains a widely studied measure of quality of therapeutic relationships between the practitioner and client. No prior study has examined the psychometrics and validity of the Working Alliance Inventory–Short (WAI-S) in a sample of families, social workers, and trained observers within child protection services. Surveys were completed by 130 families, social workers concerning 274 cases, and observers following 165 home visits during the first wave of data collected from a randomized controlled trial of child protection services. Confirmatory factor analyses were conducted on three versions of the WAI-S and demonstrated moderate to good model fit. Convergent construct validity was found with other standardized measures. Results support the use of the WAI-S during in child protection services practice and research. Future research into family engagement in child protection social work services should focus on the working relationship

    High-dimensional analysis reveals distinct endotypes in patients with idiopathic inflammatory myopathies

    Get PDF
    The idiopathic inflammatory myopathies (IIM) are a rare clinically heterogeneous group of conditions affecting the skin, muscle, joint, and lung in various combinations. While myositis specific autoantibodies are well described, we postulate that broader immune endotypes exist in IIM spanning B cell, T cell, and monocyte compartments. This study aims to identify immune endotypes through detailed immunophenotyping of peripheral blood mononuclear cells (PBMCs) in IIM patients compared to healthy controls. We collected PBMCs from 17 patients with a clinical diagnosis of inflammatory myositis and characterized the B, T, and myeloid cell subsets using mass cytometry by time of flight (CyTOF). Data were analyzed using a combination of the dimensionality reduction algorithm t-distributed stochastic neighbor embedding (t-SNE), cluster identification, characterization, and regression (CITRUS), and marker enrichment modeling (MEM); supervised biaxial gating validated populations identified by these methods to be differentially abundant between groups. Using these approaches, we identified shared immunologic features across all IIM patients, despite different clinical features, as well as two distinct immune endotypes. All IIM patients had decreased surface expression of RP105/CD180 on B cells and a reduction in circulating CD3+CXCR3+ subsets relative to healthy controls. One IIM endotype featured CXCR4 upregulation across all cellular compartments. The second endotype was hallmarked by an increased frequency of CD19+CD21loCD11c+ and CD3+CD4+PD1+ subsets. The experimental and analytical methods we describe here are broadly applicable to studying other immune-mediated diseases (e.g., autoimmunity, immunodeficiency) or protective immune responses (e.g., infection, vaccination)
    corecore