42 research outputs found

    First Study of the Negative Binomial Distribution Applied to Higher Moments of Net-charge and Net-proton Multiplicity Distributions

    Get PDF
    A study of the first four moments (mean, variance, skewness, and kurtosis) and their products (Îșσ2\kappa\sigma^{2} and SσS\sigma) of the net-charge and net-proton distributions in Au+Au collisions at sNN\sqrt{\rm s_{NN}} = 7.7-200 GeV from HIJING simulations has been carried out. The skewness and kurtosis and the collision volume independent products Îșσ2\kappa\sigma^{2} and SσS\sigma have been proposed as sensitive probes for identifying the presence of a QCD critical point. A discrete probability distribution that effectively describes the separate positively and negatively charged particle (or proton and anti-proton) multiplicity distributions is the negative binomial (or binomial) distribution (NBD/BD). The NBD/BD has been used to characterize particle production in high-energy particle and nuclear physics. Their application to the higher moments of the net-charge and net-proton distributions is examined. Differences between Îșσ2\kappa\sigma^{2} and a statistical Poisson assumption of a factor of four (for net-charge) and 40% (for net-protons) can be accounted for by the NBD/BD. This is the first application of the properties of the NBD/BD to describe the behavior of the higher moments of net-charge and net-proton distributions in nucleus-nucleus collisions.Comment: 13 pages, 4 figure

    Rapidity dependence of entropy production in proton- and nucleus-induced reactions on heavy nuclei

    Get PDF
    The entropy of hot nuclear systems is deduced from the mass distribution of fragments emitted from high energy proton- and nucleus-induced reactions via a quantum statistical model. It is found that the entropy per baryon, S/A, of intermediate rapidity ("participant") fragments is higher than the entropy of target rapidity ("spectator") fragments. The spectator fragments exhibit S/A values of ≅ 1.8 independent of the projectile energy from 30 MeV/nucleon up to 350 GeV. This value of the entropy coincides with the entropy at which nuclear matter becomes unbound

    Measurement of complex fragments and clues to the entropy production from 42-137-MeV/nucleon Ar + Au

    Get PDF
    Intermediate-rapidity fragments with A=1-14 emitted from 42-137-MeV/nucleon Ar + Au have been measured. Evidence is presented that these fragments arise from a common moving source. Entropy values are extracted from the mass distributions by use of quantum statistical and Hauser-Feshbach theories. The extracted entropy values of S/A≈2-2.4 are much smaller than the values expected from measured deuteron-to-proton ratios, but are still considerably higher than theoretically predicted values

    Light particle spectra from 35 MeV/nucleon 12C-induced reactions on 197Au

    Get PDF
    Energy spectra for p, d, t, 3He, 4He, and 6He from the reaction 12C+197Au at 35 MeV/nucleon are presented. A common intermediate rapidity source is identified using a moving source fit to the spectra that yields cross sections which are compared to analogous data at other bombarding energies and to several different models. The excitation function of the composite to proton ratios is compared with quantum statistical, hydrodynamic, and thermal models

    Inclusive neutron cross-sections at forward angles from Nb Nb and Au Au collisions at 800-MeV/nucleon

    Get PDF
    Inclusive neutron spectra were measured at 0°, 4°, 8°, 15°, 30°, and 42° from Nb-Nb and Au-Au collisions at 800 MeV/nucleon. A peak that originates from neutron evaporation from the projectile appears in the spectra at angles out to 8°. The shapes and magnitudes of the spectra are compared with those calculated from models of nucleus-nucleus collisions. The differential cross sections for Au-Au collisions are about four times those for Nb-Nb collisions. The predictions of the Vlasov-Uehling-Uhlenbeck (VUU) and QMD theories agree with the angular distributions of the differential cross sections except at small angles; the VUU prediction overestimates the angular distributions from a few degrees to about 20°, whereas the QMD prediction underestimates the angular distributions below 8°. The Firestreak model overestimates the angular distribution for Nb-Nb collisions and underestimates it for Au-Au collisions. Also, the VUU and QMD models agree with the measured double-differential cross sections in more angular and energy regions than the Firestreak and intranuclear cascade models; however, none of the models can account for the peaks at small angles (θ≤15°)

    Vlasov-Uehling-Uhlenbeck theory of medium energy heavy ion reactions: role of mean field dynamics and two body collisions

    Get PDF
    The role of nonequilibrium and quantal effects in fast nucleus-nucleus collisions is studied via the Vlasov-Uehling-Uhlenbeck theory which includes the nuclear mean field dynamics, two-body collisions, and Pauli blocking. The intranuclear cascade model, where the dynamics is governed by independent NN collisions, and the Vlasov equation, where the nuclear mean field determines the collision dynamics, are also studied as reference cases. The Vlasov equation (no collision term) yields single particle distribution functions which–after the reaction–are only slightly modified in momentum space; even in central collisions, transparency is predicted. This is in agreement with the predictions of the quantal time-dependent Hartree-Fock method. In contrast, large momentum transfer is obtained when the Uehling-Uhlenbeck collision term is incorporated; then the final momentum distribution is nearly spherically symmetric in the center of mass and a well-equilibrated nuclear system is formed: the nuclei stop each other; the translational kinetic energy is transformed into randomized microscopic motion. The Vlasov-Uehling-Uhlenbeck theory is supplemented with a phase space coalescence model of fragment formation. Calculated proton spectra compare well with recent data for Ar(42, 92, and 137 MeV/nucleon) + Ca. Also the total yields of medium mass fragments are well reproduced in the present approach. The mean field dynamics without two-body collisions, on the other hand, exhibits forward peaked proton distributions, in contrast to the data. The cascade approach underpredicts the yields of low energy protons by more than an order of magnitude

    Statistical hadronization phenomenology in K/πK/\pi fluctuations at ultra-relativistic energies

    Full text link
    We discuss the information that can be obtained from an analysis of fluctuations in heavy ion collisions within the context of the statistical model of particle production. We then examine the recently published experimental data on ratio fluctuations, and use it to obtain constraints on the statistical properties (physically relevant ensemble, degree of chemical equilibration, scaling across energies and system sizes) and freeze-out dynamics (amount of reinteraction between chemical and thermal freeze-out) of the system.Comment: Proceedings, SQM2009. Fig. 4, the main results figure, was wrong due to editing mistake, now correcte

    Central collisions of relativistic heavy ions

    Get PDF
    The energy spectra of protons and light nuclei produced by the interaction of 4He and 20Ne projectiles with Al and U targets have been investigated at incident energies ranging from 0.25 to 2.1 GeV per nucleon. Single fragment inclusive spectra have been obtained at angles between 25° and 150°, in the energy range from 30 to 150 MeV/nucleon. The multiplicity of intermediate and high energy charged particles was determined in coincidence with the measured fragments. In a separate study, fragment spectra were obtained in the evaporation energy range from 12C and 20Ne bombardment of uranium. We observe structureless, exponentially decaying spectra throughout the range of studied fragment masses. There is evidence for two major classes of fragments; one with emission at intermediate temperature from a system moving slowly in the lab frame, and the other with high temperature emission from a system propagating at a velocity intermediate between target and projectile. The high energy proton spectra are fairly well reproduced by a nuclear fireball model based on simple geometrical, kinematical, and statistical assumptions. Light cluster emission is also discussed in the framework of statistical models. NUCLEAR REACTIONS U(20Ne,X), E=250 MeV/nucl.; U(20Ne,X), U(α,X) E=400 MeV/nucl.; U(20Ne,X), Al(20Ne,X), E=2.1 GeV/nucl.; measured σ(E,θ), X=p, d, t, 3He,4He. U(20Ne,X), U(α,X), E=400 MeV/nucl.; U(20Ne,X), E=2.1 GeV/nucl.; measured σ(E, θ), Li to O. U(20Ne,X), U(12C,X), E=2.1 GeV/nucl.; measured σ(E, 90°), 4He to B. Nuclear fireballs, coalescence, thermodynamics of light nuclei production

    Nuclear fireball model for proton inclusive spectra from relativistic heavy-ion collisions

    Get PDF
    A simple model is proposed for the emission of nucleons with velocities intermediate between those of the target and projectile. In this model, the nucleons which are mutually swept out from the target and projectile form a hot quasiequilibrated fireball which decays as an ideal gas. The overall features of the proton-inclusive spectra from 250- and 400-MeV/nucleon 20Ne ions and 400-MeV/nucleon 4He ions interacting with uranium are fitted without any adjustable parameters
    corecore