1,411 research outputs found

    A model for a countercurrent gas—solid—solid trickle flow reactor for equilibrium reactions. The methanol synthesis

    Get PDF
    The theoretical background for a novel, countercurrent gas—solid—solid trickle flow reactor for equilibrium gas reactions is presented. A one-dimensional, steady-state reactor model is developed. The influence of the various process parameters on the reactor performance is discussed. The physical and chemical data used apply to the case of low-pressure methanol synthesis from CO and H2 with an amorphous silica—alumina as the product adsorbent. Complete reactant conversion is attainable in a single-pass operation, so that a recycle loop for the non-converted reactants is superfluous.\ud \ud In the following article the installation and experiments for which this theory was developed will be described

    Gas-solid trickle flow hydrodynamics in a packed column

    Get PDF
    The pressure gradient and the static and the dynamic hold-up have been measured for a system consisting of a Fluid Cracking Catalyst (FCC) of 30–150 × 10−6 m diameter, trickling over a packed bed and with a gas streaming in countercurrent flow. The experiments were carried out at ambient conditions using a glass column of 25 × 10−3 m diameter. The packing material consisted of 8 × 8 × 3 mm ceramic Raschig rings, a mixture of 7 × 7 × 1 mm glass Raschig rings and 5 × 5 mm catalyst pellets and of stacked Kerapak ceramic mixing units of Sulzer, each unit 50 mm long and 25 mm in diameter. Four different gases have been tested. A correlation for the pressure gradient in the preloading region is derived based on the Ergun equation and taking into account the internal gas recirculation due to the solids trickles. The void fraction of the trickles is found to be independent of the physical properties of the gas phase. The behaviour of the GSTF-system in the preloading regime and the phenomena of loading and flooding are discussed. A correlation is given which relates the boundary between preloading and loading with the particle and gas properties and the solids flow rate

    Thermally safe operation of a cooled semi-batch reactor: slow liquid-liquid reactions

    Get PDF
    Thermally safe operation of a semi-batch reactor (SBR) implies that conditions leading to strong accumulation of unreacted reactants must be avoided. All thermal responses of a SBR, in which a slow liquid-liquid reaction takes place, can be represented in a diagram with the kinetics, cooling capacity and potential temperature rise as the keyfactors. Slow reactions taking place in the dispersed phase were found to be more prone to accumulation than reactions in the continuous phase. An overheat situation can develop after the reactants have accumulated in their ”own“ phase due to a slight overcooling

    Binary vapour—liquid equilibria of methanol with sulfolane. Tetraethylene glycol dimethyl ether and 18-crown-6 = Phasengleichgewichte in binären systemen von Methanol mit Sulfolan, Tetraethylenglycoldimethylether und 18-krone-6 Kronenether

    Get PDF
    The activity coefficients of methanol in sulfolane, tetraethylene glycol dimethyl ether (TEGDME) and 18-crown-6 under conditions of equilibrium have been determined in the temperature range 423–503 K and in the pressure range 0.28–3.5 MPa. A minimum in the activity coefficient was found for the methanol—TEGDME and methanol—18-crown-6 solutions

    The kinetics of the methanol synthesis on a copper catalyst: An experimental study

    Get PDF
    The kinetics of the low pressure of methanol from feed gases containing solely CO and H2 were studied in an internally recycled gradientless reactor. As experimental accuracy impeded the application of high CO contents, the experimental range of mole fraction of CO was limited to 0.04 to 0.22. The total pressure was varied from 3 to 7 MPa and the temperature from 503 to 553 K. Residence time distribution experiments confirmed the assumption of perfect mixing on a macroscale. A maximum likelihood approach was used to fit possible kinetic equations. Although more accurate results and better fits—compared to previous experiments in a simple integral reactor—were obtained, no single rate expression could be selected as the most appropriate one. This was mainly attributed to the effects of small amounts of CO2 and H2O formed in the reactor. Three different reaction rate equations fit the experiments equally well. Arguments are given that we never can expect to elucidate the reaction mechanisms on the basis of kinetic experiments

    Methanol synthesis in a countercurrent gas-solid-solid trickle flow reactor. An experimental study

    Get PDF
    The synthesis of methanol from CO and H2 was executed in a gas-solid-solid trickle flow reactor. The reactor consisted of three tubular reactor sections with cooling sections in between. The catalyst was Cu on alumina, the adsorbent was a silica-alumina powder and the experimental range 498–523 K, 5.0–6.3 MPa and 0.2–0.33 molar fraction of CO. Complete conversion in one pass was achieved for stoichiometric feed rates, so that the gas outlet could be closed. The experimental results are compared with the model presented in the previous paper [Westerterp, K.R. and Kuczynski, M. (1987) Chem. Engng Sci.42,]; agreement is close over the entire conversion range from 15% to 100%

    Effects of retro-nasal aroma release on satiation

    Get PDF
    It is suggested that the brain response of a food odour sensed retro-nasally is related to satiation. The extent of retro-nasal aroma release during consumption depends on the physical structure of a food, i.e. solid foods generate a longer, more pronounced retro-nasal aroma release than liquid foods. The aim of this study was to investigate if a beverage becomes more satiating when the retro-nasal aroma release profile coincides with the profile of a (soft) solid food. In a double-blind placebo-controlled randomised cross-over full factorial design, twenty-seven healthy subjects (fourteen males and thirteen females; aged 16-65 years; BMI 19-37 kg/m(2) were administered aroma profiles by a computer-controlled stimulator based on air dilution olfactometry. Profile A consisted of a profile that is obtained during consumption of normal beverages. Profile B is normally observed during consumption of (soft) solids. The two profiles were produced with strawberry aroma and administered in a retro-nasal fashion, while the subjects consumed a sweetened milk drink. Before, during and after the sensory stimulation, appetite profile measurements were performed. Subjects felt significantly more satiated if they were aroma stimulated with profile B (P = 0.04). After stimulation with sweet strawberry aroma, there was a significant decrease in desire to eat sweet products (P = 0.0001). In conclusion, perceived satiation was increased by altering the extent of retro-nasal aroma release

    Interfacial areas and gas hold-ups in bubble columns and packed bubble columns at elevated pressures

    Get PDF
    Interfacial areas and gas hold-ups have been determined at pressures up to 1.85 MPa in a bubble column with a diameter of 85.5 mm and for superficial gas velocities between 1 and 10 cm s−1. In some experiments the bubble column was packed with glass cylinders of length 5.0 mm and diameter 4.0 mm. The interfacial areas were determined by the chemical method using the model reaction between CO2 and aqueous diethanolamine (DEA) and hold-ups by observation of height differences.\ud \ud The interfacial areas in the packed bubble column are unaffected by pressure. The gas hold-ups as well as the interfacial areas in the bubble column increase with increasing operating pressure. The magnitude of the pressure influence depends on the superficial gas velocity. The positive influence of pressure on the gas hold-ups and the interfacial in the bubble column originates from the formation of smaller bubbles at the gas distributor
    corecore