5 research outputs found

    Assessing the reproducibility of labelled antibody binding in quantitative multiplexed immuno-mass spectrometry imaging

    No full text
    Immuno-mass spectrometry imaging (iMSI) uses laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to determine the spatial expression of biomolecules in tissue sections following immunolabelling with antibodies conjugated to a metal reporter. As with all immunolabelling techniques, the binding efficiency of multiplexed staining can be affected by a number of factors including epitope blocking and other forms of steric hindrance. To date, the effects on the binding of metal-conjugated antibodies to their epitopes in a multiplexed analysis have yet to be quantitatively explored by iMSI. Here we describe a protocol to investigate the effects of multiplexing on reproducible binding using the muscle proteins, dystrophin, sarcospan, and myosin as a model, with antibodies conjugated with MaxparÂź reagents before histological application to murine quadriceps sections using standard immunolabelling protocols and imaging with LA-ICP-MS. The antibodies were each individually applied to eight sections, and multiplexed to another eight sections. The average concentrations of the lanthanide analytes were determined, before statistical analyses found there was no significant difference between the individual and multiplexed application of the antibodies. These analyses provide a framework for ensuring reproducibility of antibody binding during multiplexed iMSI, which will allow quantitative exploration of protein-protein interactions and provide a greater understanding of fundamental biological processes during healthy and diseased states

    Quantitative immuno-mass spectrometry imaging of skeletal muscle dystrophin

    No full text
    Abstract Emerging and promising therapeutic interventions for Duchenne muscular dystrophy (DMD) are confounded by the challenges of quantifying dystrophin. Current approaches have poor precision, require large amounts of tissue, and are difficult to standardize. This paper presents an immuno-mass spectrometry imaging method using gadolinium (Gd)-labeled anti-dystrophin antibodies and laser ablation-inductively coupled plasma-mass spectrometry to simultaneously quantify and localize dystrophin in muscle sections. Gd is quantified as a proxy for the relative expression of dystrophin and was validated in murine and human skeletal muscle sections following k-means clustering segmentation, before application to DMD patients with different gene mutations where dystrophin expression was measured up to 100 ”g kg−1 Gd. These results demonstrate that immuno-mass spectrometry imaging is a viable approach for pre-clinical to clinical research in DMD. It rapidly quantified relative dystrophin in single tissue sections, efficiently used valuable patient resources, and may provide information on drug efficacy for clinical translation
    corecore