582 research outputs found

    Monte Carlo Study of the Separation of Energy Scales in Quantum Spin 1/2 Chains with Bond Disorder

    Full text link
    One-dimensional Heisenberg spin 1/2 chains with random ferro- and antiferromagnetic bonds are realized in systems such as Sr3CuPt1xIrxO6Sr_3 CuPt_{1-x} Ir_x O_6. We have investigated numerically the thermodynamic properties of a generic random bond model and of a realistic model of Sr3CuPt1xIrxO6Sr_3 CuPt_{1-x} Ir_x O_6 by the quantum Monte Carlo loop algorithm. For the first time we demonstrate the separation into three different temperature regimes for the original Hamiltonian based on an exact treatment, especially we show that the intermediate temperature regime is well-defined and observable in both the specific heat and the magnetic susceptibility. The crossover between the regimes is indicated by peaks in the specific heat. The uniform magnetic susceptibility shows Curie-like behavior in the high-, intermediate- and low-temperature regime, with different values of the Curie constant in each regime. We show that these regimes are overlapping in the realistic model and give numerical data for the analysis of experimental tests.Comment: 7 pages, 5 eps-figures included, typeset using JPSJ.sty, accepted for publication in J. Phys. Soc. Jpn. 68, Vol. 3. (1999

    Low-Temperature Scaling Regime of Random Ferromagnetic-Antiferromagnetic Spin Chains

    Full text link
    Using the Continuous Time Quantum Monte Carlo Loop algorithm, we calculate the temperature dependence of the uniform susceptibility, and the specific heat of a spin-1/2 chain with random antiferromagnetic and ferromagnetic couplings, down to very low temperatures. Our data show a consistent scaling behavior in both quantities and support strongly the conjecture drawn from the approximative real-space renormalization group treatment. A statistical analysis scheme is developed which will be useful for the search scaling behavior in numerical and experimental data of random spin chains.Comment: 4 pages and 3 figure

    The Low-Energy Fixed Points of Random Quantum Spin Chains

    Full text link
    The one-dimensional isotropic quantum Heisenberg spin systems with random couplings and random spin sizes are investigated using a real-space renormalization group scheme. It is demonstrated that these systems belong to a universality class of disordered spin systems, characterized by weakly coupled large effective spins. In this large-spin phase the uniform magnetic susceptibility diverges as 1/T with a non-universal Curie constant at low temperatures T, while the specific heat vanishes as T^delta |ln T| for T->0. For broad range of initial distributions of couplings and spin sizes the distribution functions approach a single fixed-point form, where delta \approx 0.44. For some singular initial distributions, however, fixed-point distributions have non-universal values of delta, suggesting that there is a line of fixed points.Comment: 19 pages, REVTeX, 13 figure

    Kaon Condensation in the Bound-State Approach to the Skyrme Model

    Full text link
    We explore kaon condensation using the bound-state approach to the Skyrme model on a 3-sphere. The condensation occurs when the energy required to produce a KK^- falls below the electron fermi level. This happens at the baryon number density on the order of 3--4 times nuclear density.Comment: LaTeX format, 15 pages. 3 Postscript figures, compressed and uuencode

    Low Energy Properties of the Random Spin-1/2 Ferromagnetic-Antiferromagnetic Heisenberg Chain

    Full text link
    The low energy properties of the spin-1/2 random Heisenberg chain with ferromagnetic and antiferromagnetic interactions are studied by means of the density matrix renormalization group (DMRG) and real space renormalization group (RSRG) method for finite chains. The results of the two methods are consistent with each other. The deviation of the gap distribution from that of the random singlet phase and the formation of the large-spin state is observed even for relatively small systems. For a small fraction of the ferromagnetic bond, the effect of the crossover to the random singlet phase on the low temperature susceptibility and specific heat is discussed. The crossover concentration of the ferromagnetic bond is estimated from the numerical data.Comment: 11 pages, revtex, figures upon reques

    Density Matrix Renormalization Group Method for the Random Quantum One-Dimensional Systems - Application to the Random Spin-1/2 Antiferromagnetic Heisenberg Chain -

    Full text link
    The density matrix renormalization group method is generalized to one dimensional random systems. Using this method, the energy gap distribution of the spin-1/2 random antiferromagnetic Heisenberg chain is calculated. The results are consistent with the predictions of the renormalization group theory demonstrating the effectiveness of the present method in random systems. The possible application of the present method to other random systems is discussed.Comment: 13 pages, 3 figures upon reques

    Real Space Renormalization Group Study of the S=1/2 XXZ Chains with Fibonacci Exchange Modulation

    Get PDF
    Ground state properties of the S=1/2 antiferromagnetic XXZ chain with Fibonacci exchange modulation are studied using the real space renormalization group method for strong modulation. The quantum dynamical critical behavior with a new universality class is predicted in the isotropic case. Combining our results with the weak coupling renormalization group results by Vidal et al., the ground state phase diagram is obtained.Comment: 9 pages, 9 figure

    Nonrigid chiral soliton for the octet and decuplet baryons

    Full text link
    Systematic treatment of the collective rotation of the nonrigid chiral soliton is developed in the SU(3) chiral quark soliton model and applied to the octet and decuplet baryons. The strangeness degrees of freedom are treated by a simplified bound-state approach which omits the locality of the kaon wave function. Then, the flavor rotation is divided into the isospin rotation and the emission and absorption of the kaon. The kaon Hamiltonian is diagonalized by the Hartree approximation. The soliton changes the shape according to the strangeness. The baryons appear as the rotational bands of the combined system of the soliton and the kaon.Comment: 11 pages(LaTex), 1 figures(eps

    Inhomogeneous magnetism in single crystalline Sr3_3CuIrO6+δ_{6+\delta}: Implications to phase-separation concepts

    Full text link
    The single crystalline form of an insulator, Sr3_3CuIrO6+δ_{6+\delta}, is shown to exhibit unexpectedly more than one magnetic transition (at 5 and 19 K) with spin-glass-like magnetic susceptibility behaviour. On the basis of this finding, viz., inhomogeneous magnetism in a chemically homogeneous material, we propose that the idea of "phase- separation" described for manganites [1] is more widespread in different ways. The observed experimental features enable us to make a comparison with the predictions of a recent toy model [2] on {\it magnetic} phase separation in an insulating environment.Comment: 4 pages, 4 figure

    Numerical renormalization-group study of spin correlations in one-dimensional random spin chains

    Full text link
    We calculate the ground-state two-spin correlation functions of spin-1/2 quantum Heisenberg chains with random exchange couplings using the real-space renormalization group scheme. We extend the conventional scheme to take account of the contribution of local higher multiplet excitations in each decimation step. This extended scheme can provide highly accurate numerical data for large systems. The random average of staggered spin correlations of the chains with random antiferromagnetic (AF) couplings shows algebraic decay like 1/r21/r^2, which verifies the Fisher's analytic results. For chains with random ferromagnetic (FM) and AF couplings, the random average of generalized staggered correlations is found to decay more slowly than a power-law, in the form close to 1/ln(r)1/\ln(r). The difference between the distribution functions of the spin correlations of the random AF chains and of the random FM-AF chains is also discussed.Comment: 14 pages including 8 figures, REVTeX, submitted to Physical Review
    corecore