27,684 research outputs found

    Water quality monitor

    Get PDF
    The preprototype water quality monitor (WQM) subsystem was designed based on a breadboard monitor for pH, specific conductance, and total organic carbon (TOC). The breadboard equipment demonstrated the feasibility of continuous on-line analysis of potable water for a spacecraft. The WQM subsystem incorporated these breadboard features and, in addition, measures ammonia and includes a failure detection system. The sample, reagent, and standard solutions are delivered to the WQM sensing manifold where chemical operations and measurements are performed using flow through sensors for conductance, pH, TOC, and NH3. Fault monitoring flow detection is also accomplished in this manifold assembly. The WQM is designed to operate automatically using a hardwired electronic controller. In addition, automatic shutdown is incorporated which is keyed to four flow sensors strategically located within the fluid system

    A study of photon production in 70 GeV / c proton-neon collisions

    Get PDF
    Imperial Users onl

    Independently contacted two-dimensional electron systems in double quantum wells

    Get PDF
    A new technique for creating independent ohmic contacts to closely spaced two-dimensional electron systems in double quantum well (DQW) structures is described. Without use of shallow diffusion or precisely controlled etching methods, the present technique results in low-resistance contacts which can be electrostatically switched between the two-conducting layers. The method is demonstrated with a DQW consisting of two 200 Å GaAs quantum wells separated by a 175 Å AlGaAs barrier. A wide variety of experiments on Coulomb and tunnel-coupled 2D electron systems is now accessible

    Field-induced resonant tunneling between parallel two-dimensional electron systems

    Get PDF
    Resonant tunneling between two high-mobility two-dimensional (2D) electron systems in a double quantum well structure has been induced by the action of an external Schottky gate field. Using one 2D electron gas as source and the other as drain, the tunnel conductance between them shows a strong resonance when the gate field aligns the ground subband edges of the two quantum wells

    Charge metastability and hysteresis in the quantum Hall regime

    Get PDF
    We report simultaneous quasi-dc magnetotransport and high frequency surface acoustic wave measurements on bilayer two-dimensional electron systems in GaAs. Near strong integer quantized Hall states a strong magnetic field sweep hysteresis in the velocity of the acoustic waves is observed at low temperatures. This hysteresis indicates the presence of a metastable state with anomalously high conductivity in the interior of the sample. This non-equilibrium state is not revealed by conventional low frequency transport measurements which are dominated by dissipationless transport at the edge of the 2D system. We find that a field-cooling technique allows the equilibrium charge configuration within the interior of the sample to be established. A simple model for this behavior is discussed.Comment: 8 pages, 4 postscript figure

    Thermal model of a 75 watt/e/ space power planar RTG system

    Get PDF
    Planar type radioisotope thermoelectric generator with beryllium plate for spacecraft powe

    Techniques for achieving magnetic cleanliness on deep-space missions

    Get PDF
    Techniques for obtaining magnetic cleanliness on deep space missions to allow interplanetary magnetic field mappin

    Sketches of Our Mountain Pioneers

    Get PDF
    https://digitalcommons.acu.edu/crs_books/1596/thumbnail.jp

    Invisible Pixels Are Dead, Long Live Invisible Pixels!

    Full text link
    Privacy has deteriorated in the world wide web ever since the 1990s. The tracking of browsing habits by different third-parties has been at the center of this deterioration. Web cookies and so-called web beacons have been the classical ways to implement third-party tracking. Due to the introduction of more sophisticated technical tracking solutions and other fundamental transformations, the use of classical image-based web beacons might be expected to have lost their appeal. According to a sample of over thirty thousand images collected from popular websites, this paper shows that such an assumption is a fallacy: classical 1 x 1 images are still commonly used for third-party tracking in the contemporary world wide web. While it seems that ad-blockers are unable to fully block these classical image-based tracking beacons, the paper further demonstrates that even limited information can be used to accurately classify the third-party 1 x 1 images from other images. An average classification accuracy of 0.956 is reached in the empirical experiment. With these results the paper contributes to the ongoing attempts to better understand the lack of privacy in the world wide web, and the means by which the situation might be eventually improved.Comment: Forthcoming in the 17th Workshop on Privacy in the Electronic Society (WPES 2018), Toronto, AC
    corecore