35,001 research outputs found

    Diffeomorphism, kappa transformations and the theory of non-linear realisations

    Get PDF
    We will show how the theory of non-linear realisations can be used to naturally incorporate world line diffeomorphisms and kappa transformations for the point particle and superpoint particle respectively. Similar results also hold for a general p-brane and super p-brane, however, we must in these cases include an additional Lorentz transformation.Comment: 19pages, no figure. References are added and typos are correcte

    Canonical and non-canonical equilibrium distribution

    Full text link
    We address the problem of the dynamical foundation of non-canonical equilibrium. We consider, as a source of divergence from ordinary statistical mechanics, the breakdown of the condition of time scale separation between microscopic and macroscopic dynamics. We show that this breakdown has the effect of producing a significant deviation from the canonical prescription. We also show that, while the canonical equilibrium can be reached with no apparent dependence on dynamics, the specific form of non-canonical equilibrium is, in fact, determined by dynamics. We consider the special case where the thermal reservoir driving the system of interest to equilibrium is a generator of intermittent fluctuations. We assess the form of the non-canonical equilibrium reached by the system in this case. Using both theoretical and numerical arguments we demonstrate that Levy statistics are the best description of the dynamics and that the Levy distribution is the correct basin of attraction. We also show that the correct path to non-canonical equilibrium by means of strictly thermodynamic arguments has not yet been found, and that further research has to be done to establish a connection between dynamics and thermodynamics.Comment: 13 pages, 6 figure

    Non-Poisson dichotomous noise: higher-order correlation functions and aging

    Get PDF
    We study a two-state symmetric noise, with a given waiting time distribution ψ(τ)\psi (\tau), and focus our attention on the connection between the four-time and the two-time correlation functions. The transition of ψ(τ)\psi (\tau) from the exponential to the non-exponential condition yields the breakdown of the usual factorization condition of high-order correlation functions, as well as the birth of aging effects. We discuss the subtle connections between these two properties, and establish the condition that the Liouville-like approach has to satisfy in order to produce a correct description of the resulting diffusion process

    Non-Poisson dichotomous noise: higher-order correlation functions and aging

    Full text link
    We study a two-state symmetric noise, with a given waiting time distribution ψ(τ)\psi (\tau), and focus our attention on the connection between the four-time and the two-time correlation functions. The transition of ψ(τ)\psi (\tau) from the exponential to the non-exponential condition yields the breakdown of the usual factorization condition of high-order correlation functions, as well as the birth of aging effects. We discuss the subtle connections between these two properties, and establish the condition that the Liouville-like approach has to satisfy in order to produce a correct description of the resulting diffusion process

    Fractional Calculus as a Macroscopic Manifestation of Randomness

    Full text link
    We generalize the method of Van Hove so as to deal with the case of non-ordinary statistical mechanics, that being phenomena with no time-scale separation. We show that in the case of ordinary statistical mechanics, even if the adoption of the Van Hove method imposes randomness upon Hamiltonian dynamics, the resulting statistical process is described using normal calculus techniques. On the other hand, in the case where there is no time-scale separation, this generalized version of Van Hove's method not only imposes randomness upon the microscopic dynamics, but it also transmits randomness to the macroscopic level. As a result, the correct description of macroscopic dynamics has to be expressed in terms of the fractional calculus.Comment: 20 pages, 1 figur

    Probability flux as a method for detecting scaling

    Full text link
    We introduce a new method for detecting scaling in time series. The method uses the properties of the probability flux for stochastic self-affine processes and is called the probability flux analysis (PFA). The advantages of this method are: 1) it is independent of the finiteness of the moments of the self-affine process; 2) it does not require a binning procedure for numerical evaluation of the the probability density function. These properties make the method particularly efficient for heavy tailed distributions in which the variance is not finite, for example, in Levy alpha-stable processes. This utility is established using a comparison with the diffusion entropy (DE) method
    corecore