35,068 research outputs found
Galaxy Orientations in the Coma Cluster
We have examined the orientations of early-type galaxies in the Coma cluster
to see whether the well-established tendency for brightest cluster galaxies to
share the same major axis orientation as their host cluster also extends to the
rest of the galaxy population. We find no evidence of any preferential
orientations of galaxies within Coma or its surroundings. The implications of
this result for theories of the formation of clusters and galaxies
(particularly the first-ranked members) are discussed.Comment: Accepted for publication in the Astrophysical Journal Letters. 4
pages, 4 figure
Detection limits for close eclipsing and transiting sub-stellar and planetary companions to white dwarfs in the WASP survey
We used photometric data from the WASP (Wide-Angle Search for Planets) survey
to explore the possibility of detecting eclipses and transit signals of brown
dwarfs, gas giants and terrestrial companions in close orbit around white
dwarfs. We performed extensive Monte Carlo simulations and we found that for
Gaussian random noise WASP is sensitive to companions as small as the Moon
orbiting a 12 white dwarf. For fainter stars WASP is sensitive to
increasingly larger bodies. Our sensitivity drops in the presence of co-variant
noise structure in the data, nevertheless Earth-size bodies remain readily
detectable in relatively low S/N data. We searched for eclipses and transit
signals in a sample of 194 white dwarfs in the WASP archive however, no
evidence for companions was found. We used our results to place tentative upper
limits to the frequency of such systems. While we can only place weak limits on
the likely frequency of Earth-sized or smaller companions; brown dwarfs and gas
giants (radius R) with periods 0.2 days must certainly be
rare (). More stringent constraints requires significantly larger white
dwarf samples, higher observing cadence and continuous coverage. The short
duration of eclipses and transits of white dwarfs compared to the cadence of
WASP observations appears to be one of the main factors limiting the detection
rate in a survey optimised for planetary transits of main sequence stars.Comment: 8 pages, 3 figure
On Holomorphic Effective Actions of Hypermultiplets Coupled to External Gauge Superfields
We study the structure of holomorphic effective action for hypermultiplet
models interacting with background super Yang-Mills fields. A general form of
holomorphic effective action is found for hypermultiplet belonging to arbitrary
representation of any semisimple compact Lie group spontaneously broken to its
maximal abelian subgroup. The applications of obtained results to
hypermultiplets in fundamental and adjoint representations of the SU(n), SO(n),
Sp(n) groups are considered.Comment: 8 pages, no figure
Coulomb Oscillations in Antidots in the Integer and Fractional Quantum Hall Regimes
We report measurements of resistance oscillations in micron-scale antidots in
both the integer and fractional quantum Hall regimes. In the integer regime, we
conclude that oscillations are of the Coulomb type from the scaling of magnetic
field period with the number of edges bound to the antidot. Based on both
gate-voltage and field periods, we find at filling factor {\nu} = 2 a tunneling
charge of e and two charged edges. Generalizing this picture to the fractional
regime, we find (again, based on field and gate-voltage periods) at {\nu} = 2/3
a tunneling charge of (2/3)e and a single charged edge.Comment: related papers at http://marcuslab.harvard.ed
Bilayer Quantum Hall Systems at nuT = 1: Coulomb Drag and the Transition from Weak to Strong Interlayer Coupling
Measurements revealing anomalously large frictional drag at the transition between the weakly and strongly coupled regimes of a bilayer two-dimensional electron system at total Landau level filling factor nuT = 1 are reported. This result suggests the existence of fluctuations, either static or dynamic, near the phase boundary separating the quantized Hall state at small layer separations from the compressible state at larger separations. Interestingly, the anomalies in drag seem to persist to larger layer separations than does interlayer phase coherence as detected in tunneling
Double layer two-dimensional electron systems: Probing the transition from weak to strong coupling with Coulomb drag
Frictional drag measurements revealing anomalously large dissipation at the
transition between the weakly- and strongly-coupled regimes of a bilayer
two-dimensional electron system at total Landau level filling factor
are reported. This result suggests the existence of fluctuations, either static
or dynamic, near the phase boundary separating the quantized Hall state at
small layer separations from the compressible state at larger separations.
Interestingly, the anomalies in drag seem to persist to larger layer
separations than does interlayer phase coherence as detected in tunneling.Comment: 4 pages, 4 figure
- …