24,181 research outputs found
Description of historical crop calendar data bases developed to support foreign commodity production forecasting project experiments
The content, format, and storage of data bases developed for the Foreign Commodity Production Forecasting project and used to produce normal crop calendars are described. In addition, the data bases may be used for agricultural meteorology, modeling of stage sequences and planting dates, and as indicators of possible drought and famine
Normal crop calendars. Volume 1: Assembly and application of historical crop data to a standard product
The approach used in the collection, collation, and compilation of normal crop calendar for the foreign commodity production forecasting (FCPF) project of the AgRISTARS program is described
Evidence for A Two-dimensional Quantum Wigner Solid in Zero Magnetic Field
We report the first experimental observation of a characteristic nonlinear
threshold behavior from dc dynamical response as an evidence for a Wigner
crystallization in high-purity GaAs 2D hole systems in zero magnetic field. The
system under increasing current drive exhibits voltage oscillations with
negative differential resistance. They confirm the coexistence of a moving
crystal along with striped edge states as observed for electrons on helium
surfaces. However, the threshold is well below the typical classical levels due
to a different pinning and depinning mechanism that is possibly related to a
quantum process
Cascade of Quantum Phase Transitions in Tunnel-Coupled Edge States
We report on the cascade of quantum phase transitions exhibited by
tunnel-coupled edge states across a quantum Hall line junction. We identify a
series of quantum critical points between successive strong and weak tunneling
regimes in the zero-bias conductance. Scaling analysis shows that the
conductance near the critical magnetic fields is a function of a single
scaling argument , where the exponent .
This puzzling resemblance to a quantum Hall-insulator transition points to
importance of interedge correlation between the coupled edge states.Comment: 4 pages, 3 figure
Probing the Melting of a Two-dimensional Quantum Wigner Crystal via its Screening Efficiency
One of the most fundamental and yet elusive collective phases of an
interacting electron system is the quantum Wigner crystal (WC), an ordered
array of electrons expected to form when the electrons' Coulomb repulsion
energy eclipses their kinetic (Fermi) energy. In low-disorder, two-dimensional
(2D) electron systems, the quantum WC is known to be favored at very low
temperatures () and small Landau level filling factors (), near the
termination of the fractional quantum Hall states. This WC phase exhibits an
insulating behavior, reflecting its pinning by the small but finite disorder
potential. An experimental determination of a vs phase diagram for
the melting of the WC, however, has proved to be challenging. Here we use
capacitance measurements to probe the 2D WC through its effective screening as
a function of and . We find that, as expected, the screening
efficiency of the pinned WC is very poor at very low and improves at higher
once the WC melts. Surprisingly, however, rather than monotonically
changing with increasing , the screening efficiency shows a well-defined
maximum at a which is close to the previously-reported melting temperature
of the WC. Our experimental results suggest a new method to map out a vs
phase diagram of the magnetic-field-induced WC precisely.Comment: The formal version is published on Phys. Rev. Lett. 122, 116601
(2019
- …