11 research outputs found

    Stability and function of adult vasculature is sustained by Akt/Jagged1 signalling axis in endothelium.

    Get PDF
    The signalling pathways operational in quiescent, post-development vasculature remain enigmatic. Here we show that unlike neovascularization, endothelial Akt signalling in established vasculature is crucial not for endothelial cell (EC) survival, but for sustained interactions with pericytes and vascular smooth muscle cells (VSMCs) regulating vascular stability and function. Inducible endothelial-specific Akt1 deletion in adult global Akt2KO mice triggers progressive VSMC apoptosis. In hearts, this causes a loss of arteries and arterioles and, despite a high capillary density, diminished vascular patency and severe cardiac dysfunction. Similarly, endothelial Akt deletion induces retinal VSMC loss and basement membrane deterioration resulting in vascular regression and retinal atrophy. Mechanistically, the Akt/mTOR axis controls endothelial Jagged1 expression and, thereby, Notch signalling regulating VSMC maintenance. Jagged1 peptide treatment of Akt1ΔEC;Akt2KO mice and Jagged1 re-expression in Akt-deficient endothelium restores VSMC coverage. Thus, sustained endothelial Akt1/2 signalling is critical in maintaining vascular stability and homeostasis, thereby preserving tissue and organ function

    Genetic and Molecular Characterization of Ca2+ and IP3 Signaling in the Nematode Caenorhabditis elegans

    No full text

    Emerging role of Toll-like receptors in the control of pain and itch

    No full text

    Treatment of Skin Disorders with Aloe Materials

    No full text

    Packaging for Bio-micro-electro-mechanical Systems (BioMEMS) and Microfluidic Chips

    No full text
    corecore