3,266 research outputs found

    Reverse-Engineering Satire, or "Paper on Computational Humor Accepted Despite Making Serious Advances"

    Full text link
    Humor is an essential human trait. Efforts to understand humor have called out links between humor and the foundations of cognition, as well as the importance of humor in social engagement. As such, it is a promising and important subject of study, with relevance for artificial intelligence and human-computer interaction. Previous computational work on humor has mostly operated at a coarse level of granularity, e.g., predicting whether an entire sentence, paragraph, document, etc., is humorous. As a step toward deep understanding of humor, we seek fine-grained models of attributes that make a given text humorous. Starting from the observation that satirical news headlines tend to resemble serious news headlines, we build and analyze a corpus of satirical headlines paired with nearly identical but serious headlines. The corpus is constructed via Unfun.me, an online game that incentivizes players to make minimal edits to satirical headlines with the goal of making other players believe the results are serious headlines. The edit operations used to successfully remove humor pinpoint the words and concepts that play a key role in making the original, satirical headline funny. Our analysis reveals that the humor tends to reside toward the end of headlines, and primarily in noun phrases, and that most satirical headlines follow a certain logical pattern, which we term false analogy. Overall, this paper deepens our understanding of the syntactic and semantic structure of satirical news headlines and provides insights for building humor-producing systems.Comment: Proceedings of the 33rd AAAI Conference on Artificial Intelligence, 201

    Mixed-Criticality Scheduling with I/O

    Full text link
    This paper addresses the problem of scheduling tasks with different criticality levels in the presence of I/O requests. In mixed-criticality scheduling, higher criticality tasks are given precedence over those of lower criticality when it is impossible to guarantee the schedulability of all tasks. While mixed-criticality scheduling has gained attention in recent years, most approaches typically assume a periodic task model. This assumption does not always hold in practice, especially for real-time and embedded systems that perform I/O. For example, many tasks block on I/O requests until devices signal their completion via interrupts; both the arrival of interrupts and the waking of blocked tasks can be aperiodic. In our prior work, we developed a scheduling technique in the Quest real-time operating system, which integrates the time-budgeted management of I/O operations with Sporadic Server scheduling of tasks. This paper extends our previous scheduling approach with support for mixed-criticality tasks and I/O requests on the same processing core. Results show the effective schedulability of different task sets in the presence of I/O requests is superior in our approach compared to traditional methods that manage I/O using techniques such as Sporadic Servers.Comment: Second version has replaced simulation experiments with real machine experiments, third version fixed minor error in Equation 5 (missing a plus sign

    Predictable migration and communication in the Quest-V multikernal

    Full text link
    Quest-V is a system we have been developing from the ground up, with objectives focusing on safety, predictability and efficiency. It is designed to work on emerging multicore processors with hardware virtualization support. Quest-V is implemented as a ``distributed system on a chip'' and comprises multiple sandbox kernels. Sandbox kernels are isolated from one another in separate regions of physical memory, having access to a subset of processing cores and I/O devices. This partitioning prevents system failures in one sandbox affecting the operation of other sandboxes. Shared memory channels managed by system monitors enable inter-sandbox communication. The distributed nature of Quest-V means each sandbox has a separate physical clock, with all event timings being managed by per-core local timers. Each sandbox is responsible for its own scheduling and I/O management, without requiring intervention of a hypervisor. In this paper, we formulate bounds on inter-sandbox communication in the absence of a global scheduler or global system clock. We also describe how address space migration between sandboxes can be guaranteed without violating service constraints. Experimental results on a working system show the conditions under which Quest-V performs real-time communication and migration.National Science Foundation (1117025

    Primes associated to multigraded modules

    Get PDF
    AbstractLet R=⊕n∈NtRn be a Noetherian multigraded ring, and let M be a finitely generated multigraded R-module. We investigate the asymptotic behavior of AssR0(Mn). In case R is generated in total degree one, we show that the expected stability occurs. We also consider several non-standard cases. For general N-graded R, we show that {AssR0(Mn)} is eventually periodic, but need not be stable. For rings graded by Nt, with t⩾2, we show that in some cases a form of periodicity holds, while in others there is a “cone” of stability

    Topics in Cosmic Acceleration and Braneworlds

    Get PDF
    Cosmic acceleration has come to be a standard, and perhaps required, ingredient in our current understanding of the universe. In the early universe, under the name of inflation, a phase of accelerated expansion is used to solve many problems with the standard Hot Big Bang cosmology. In the late universe, cosmic acceleration seems to best explain a wide variety of observations. In both cases, we lack a complete theory of what drives cosmic acceleration. In this thesis I discuss some open issues in our understanding of cosmic acceleration, both in the early and late universe

    Some aspects of inference, with particular reference to goodness of fit

    Get PDF

    Leadership, Organization, and Motivation in Collegiate Football

    Full text link
    http://deepblue.lib.umich.edu/bitstream/2027.42/83712/1/MO_399_Project_Erik_West.pd
    corecore