27 research outputs found

    Megafaunal Community Structure of Andaman Seamounts Including the Back-Arc Basin – A Quantitative Exploration from the Indian Ocean

    Get PDF
    Species rich benthic communities have been reported from some seamounts, predominantly from the Atlantic and Pacific Oceans, but the fauna and habitats on Indian Ocean seamounts are still poorly known. This study focuses on two seamounts, a submarine volcano (cratered seamount – CSM) and a non-volcano (SM2) in the Andaman Back–arc Basin (ABB), and the basin itself. The main purpose was to explore and generate regional biodiversity data from summit and flank (upper slope) of the Andaman seamounts for comparison with other seamounts worldwide. We also investigated how substratum types affect the megafaunal community structure along the ABB. Underwater video recordings from TeleVision guided Gripper (TVG) lowerings were used to describe the benthic community structure along the ABB and both seamounts. We found 13 varieties of substratum in the study area. The CSM has hard substratum, such as boulders and cobbles, whereas the SM2 was dominated by cobbles and fine sediment. The highest abundance of megabenthic communities was recorded on the flank of the CSM. Species richness and diversity were higher at the flank of the CSM than other are of ABB. Non-metric multi-dimensional scaling (nMDS) analysis of substratum types showed 50% similarity between the flanks of both seamounts, because both sites have a component of cobbles mixed with fine sediments in their substratum. Further, nMDS of faunal abundance revealed two groups, each restricted to one of the seamounts, suggesting faunal distinctness between them. The sessile fauna corals and poriferans showed a significant positive relation with cobbles and fine sediments substratum, while the mobile categories echinoderms and arthropods showed a significant positive relation with fine sediments only

    A precise bathymetric map of the world’s deepest seafloor, Challenger Deep in the Mariana Trench

    Get PDF
    Data from three bathymetric surveys by R/V Kairei using a 12-kHz multibeam echosounder and differential GPS were used to create an improved topographic model of the Challenger Deep in the southwestern part of the Mariana Trench, which is known as the deepest seafloor in the world. The strike of most of the elongated structures related to plate bending accompanied by subduction of the Pacific plate is N70°E and is not parallel to the trench axis. The bending-related structures were formed by reactivation of seafloor spreading fabric. Challenger Deep consists of three en echelon depressions along the trench axis, each of which is 6-10 km long, about 2 km wide, and deeper than 10,850 m. The eastern depression is the deepest, with a depth of 10,920 ± 5 m

    Towards an International Height Reference System: insights from the Colorado geoid experiment using AUSGeoid computation methods

    Get PDF
    We apply the AUSGeoid data processing and computation methodologies to data provided for the International Height Reference System (IHRS) Colorado experiment as part of the International Association of Geodesy Joint Working Groups 0.1.2 and 2.2.2. This experiment is undertaken to test a range of different geoid computation methods from international research groups with a view to standardising these methods to form a set of conventions that can be established as an IHRS. The IHRS can realise an International Height Reference Frame to be used to study physical changes on and within the Earth. The Colorado experiment study site is much more mountainous (maximum height 4401 m) than the mostly flat Australian continent (maximum height 2228 m), and the available data over Colorado are different from Australian data (e.g. much more extensive airborne gravity coverage). Hence, we have tested and applied several modifications to the AUSGeoid approach, which had been tailored to the Australian situation. This includes different methods for the computation of terrain corrections, the gridding of terrestrial gravity data, the treatment of long-wavelength errors in the gravity anomaly grid and the combination of terrestrial and airborne data. A new method that has not previously been tested is the application of a spherical harmonic high-pass filter to residual anomalies. The results indicate that the AUSGeoid methods can successfully be used to compute a high accuracy geoid in challenging mountainous conditions. Modifications to the AUSGeoid approach lead to root-mean-square differences between geoid models up to ~ 0.028 m and agreement with GNSS-levelling data to ~ 0.044 m, but the benefits of these modifications cannot be rigorously assessed due to the limitation of the GNSS-levelling accuracy over the computation area

    Global gravity, bathymetry, and the distribution of submarine volcanism through space and time

    No full text
    The seafloor is characterized by numerous seamounts and oceanic islands which are mainly volcanic in origin. Relatively few of these features (<∼0.1%), however, have been dated, and so little is known about their tectonic setting. One parameter that is sensitive to whether a seamount formed on, near, or far from a mid-ocean ridge is the elastic thickness, Te, which is a proxy for the long-term strength of the lithosphere. Most previous studies are based on using the bathymetry to calculate the gravity anomaly for different values of Te and then comparing the calculated and observed gravity anomaly. The problem with such an approach is that bathymetry data are usually limited to single-beam echo sounder data acquired along a ship track and these data are too sparse to define seamount shape. We therefore use the satellite-derived gravity anomaly to predict the bathymetry for different values of Te. By comparing the predicted bathymetry to actual shipboard soundings in the vicinity of each locality in the Wessel global seamount database, we have obtained 9758 Te estimates from a wide range of submarine volcanic features in the Pacific, Indian, and Atlantic oceans. Comparisons where there are previous estimates show that bathymetric prediction is a robust way to estimate Te and its upper and lower bounds. Te at sites where there is both a sample and crustal age show considerable scatter, however, and there is no simple relationship between Te and age. Nevertheless, we are able to tentatively assign a tectonic setting to each Te estimate. The most striking results are in the Pacific Ocean where a broad swath of "on-ridge" volcanism extends from the Foundation seamounts and Ducie Island/Easter Island ridge in the southeast, across the equator, to the Shatsky and Hess rises in the northwest. Interspersed among the on-ridge volcanism are "flank ridge" and "off-ridge" features. The Indian and Atlantic oceans also show a mix of tectonic settings. Off-ridge volcanism dominates in the eastern North Atlantic and northeast Indian oceans, while flank ridge volcanism dominates the northeastern Indian and western south Atlantic oceans. We have been unable to assign the flank ridge and off-ridge estimates an age, but the on-ridge estimates generally reflect, we believe, the age of the underlying oceanic crust. We estimate the volume of on-ridge volcanism to be ∼1.1 × 106 km3 which implies a mean seamount addition rate of ∼0.007 km3 yr-1. Rates appear to have varied through geological time, reaching their peak during the Late/Early Cretaceous and then declining to the present-day. Copyright 2006 by the American Geophysical Union
    corecore