31 research outputs found

    PLoS Negl Trop Dis

    Get PDF
    BACKGROUND: During the Ebola virus disease (EVD) epidemic in Liberia, contact tracing was implemented to rapidly detect new cases and prevent further transmission. We describe the scope and characteristics of contact tracing in Liberia and assess its performance during the 2014-2015 EVD epidemic. METHODOLOGY/PRINCIPAL FINDINGS: We performed a retrospective descriptive analysis of data collection forms for contact tracing conducted in six counties during June 2014-July 2015. EVD case counts from situation reports in the same counties were used to assess contact tracing coverage and sensitivity. Contacts who presented with symptoms and/or died, and monitoring was stopped, were classified as "potential cases". Positive predictive value (PPV) was defined as the proportion of traced contacts who were identified as potential cases. Bivariate and multivariate logistic regression models were used to identify characteristics among potential cases. We analyzed 25,830 contact tracing records for contacts who had monitoring initiated or were last exposed between June 4, 2014 and July 13, 2015. Contact tracing was initiated for 26.7% of total EVD cases and detected 3.6% of all new cases during this period. Eighty-eight percent of contacts completed monitoring, and 334 contacts were identified as potential cases (PPV = 1.4%). Potential cases were more likely to be detected early in the outbreak; hail from rural areas; report multiple exposures and symptoms; have household contact or direct bodily or fluid contact; and report nausea, fever, or weakness compared to contacts who completed monitoring. CONCLUSIONS/SIGNIFICANCE: Contact tracing was a critical intervention in Liberia and represented one of the largest contact tracing efforts during an epidemic in history. While there were notable improvements in implementation over time, these data suggest there were limitations to its performance-particularly in urban districts and during peak transmission. Recommendations for improving performance include integrated surveillance, decentralized management of multidisciplinary teams, comprehensive protocols, and community-led strategies

    Parameter estimates and system losses due to Ebola virus disease (EVD) outbreak (June 2014–April 2015) for postnatal care visits within 6 weeks, artemisinin-based combination therapy (ACT) treatments for malaria, and acute respiratory infections treated across a census of clinics providing services in Liberia excluding Montserrado County, 2010–2016.

    No full text
    <p>Parameter estimates and system losses due to Ebola virus disease (EVD) outbreak (June 2014–April 2015) for postnatal care visits within 6 weeks, artemisinin-based combination therapy (ACT) treatments for malaria, and acute respiratory infections treated across a census of clinics providing services in Liberia excluding Montserrado County, 2010–2016.</p

    Dates system outputs surpassed pre-Ebola forecasted trends for 3 months, total system outputs estimated to be lost due to the Ebola virus disease (EVD) outbreak (June 2014–April 2015), and number of clinics and clinic-months included for 10 key health system outputs across a census of clinics providing services in Liberia excluding Montserrado County, 2010–2016.

    No full text
    <p>Dates system outputs surpassed pre-Ebola forecasted trends for 3 months, total system outputs estimated to be lost due to the Ebola virus disease (EVD) outbreak (June 2014–April 2015), and number of clinics and clinic-months included for 10 key health system outputs across a census of clinics providing services in Liberia excluding Montserrado County, 2010–2016.</p

    Mean trends and system losses due to Ebola virus disease (EVD) outbreak (June 2014–April 2015) for postnatal care within 6 weeks in a census of 379 clinics providing services in Liberia from 2010–2016, excluding Montserrado County.

    No full text
    <p>The black solid line represents the fitted mean from a linear mixed model using a segmented regression parameterization, random intercepts and slopes by facility, monthly indicator variables to adjust for seasonality, a fixed effect to adjust for clinic-level catchment area, and an AR(1) structure to account for autocorrelation in residual errors. Gray dashed lines are 95% confidence intervals around the fitted mean. Red lines are placed at the final month before the start (May 2014) and end (April 2015) of the EVD outbreak in Liberia.</p

    Mean trends and system losses due to Ebola virus disease (EVD) outbreak (June 2014–April 2015) for first pentavalent vaccinations in a census of 379 clinics providing services in Liberia from 2010–2016, excluding Montserrado County.

    No full text
    <p>The black solid line represents the fitted mean from a linear mixed model using a segmented regression parameterization, random intercepts and slopes by facility, monthly indicator variables to adjust for seasonality, a fixed effect to adjust for clinic-level catchment area, and an AR(1) structure to account for autocorrelation in residual errors. Gray dashed lines are 95% confidence intervals around the fitted mean. Red lines are placed at the final month before the start (May 2014) and end (April 2015) of the EVD outbreak in Liberia.</p
    corecore