5 research outputs found
Scale-invariance in expanding and contracting universes from two-field models
We study cosmological perturbations produced by the most general
two-derivative actions involving two scalar fields, coupled to Einstein
gravity, with an arbitrary field space metric, that admit scaling solutions.
For contracting universes, we show that scale-invariant adiabatic perturbations
can be produced continuously as modes leave the horizon for any equation of
state parameter . The corresponding background solutions are unstable,
which we argue is a universal feature of contracting models that yield
scale-invariant spectra. For expanding universes, we find that nearly
scale-invariant adiabatic perturbation spectra can only be produced for , and that the corresponding scaling solutions are attractors. The
presence of a nontrivial metric on field space is a crucial ingredient in our
results.Comment: 23 pages, oversight in perturbations calculation corrected,
conclusions for expanding models modifie
Accelerated cosmological expansion due to a scalar field whose potential has a positive lower bound
In many cases a nonlinear scalar field with potential can lead to
accelerated expansion in cosmological models. This paper contains mathematical
results on this subject for homogeneous spacetimes. It is shown that, under the
assumption that has a strictly positive minimum, Wald's theorem on
spacetimes with positive cosmological constant can be generalized to a wide
class of potentials. In some cases detailed information on late-time
asymptotics is obtained. Results on the behaviour in the past time direction
are also presented.Comment: 16 page
Challenges for String Cosmology
We critically assess the twin prospects of describing the observed universe
in string theory, and using cosmological experiments to probe string theory.
For the purposes of this short review, we focus on the limitations imposed by
our incomplete understanding of string theory. After presenting an array of
significant obstacles, we indicate a few areas that may admit theoretical
progress in the near future.Comment: 18 pages; contribution to a focus issue on string cosmology for
Classical and Quantum Gravit
Hidden Symmetries and Dirac Fermions
In this paper, two things are done. First, we analyze the compatibility of
Dirac fermions with the hidden duality symmetries which appear in the toroidal
compactification of gravitational theories down to three spacetime dimensions.
We show that the Pauli couplings to the p-forms can be adjusted, for all simple
(split) groups, so that the fermions transform in a representation of the
maximal compact subgroup of the duality group G in three dimensions. Second, we
investigate how the Dirac fermions fit in the conjectured hidden overextended
symmetry G++. We show compatibility with this symmetry up to the same level as
in the pure bosonic case. We also investigate the BKL behaviour of the
Einstein-Dirac-p-form systems and provide a group theoretical interpretation of
the Belinskii-Khalatnikov result that the Dirac field removes chaos.Comment: 30 page