34 research outputs found

    Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo

    Get PDF
    Meeting Abstracts: Proceedings of the Thirteenth International Society of Sports Nutrition (ISSN) Conference and Expo Clearwater Beach, FL, USA. 9-11 June 201

    The 1-week and 8-month effects of a ketogenic diet or ketone salt supplementation on multi-organ markers of oxidative stress and mitochondrial function in rats

    No full text
    We determined the short- and long-term effects of a ketogenic diet (KD) or ketone salt (KS) supplementation on multi-organ oxidative stress and mitochondrial markers. For short-term feedings, 4 month-old male rats were provided isocaloric amounts of KD (n = 10), standard chow (SC) (n = 10) or SC + KS (~1.2 g/day, n = 10). For long-term feedings, 4 month-old male rats were provided KD (n = 8), SC (n = 7) or SC + KS (n = 7) for 8 months and rotarod tested every 2 months. Blood, brain (whole cortex), liver and gastrocnemius muscle were harvested from all rats for biochemical analyses. Additionally, mitochondria from the brain, muscle and liver tissue of long-term-fed rats were analyzed for mitochondrial quantity (maximal citrate synthase activity), quality (state 3 and 4 respiration) and reactive oxygen species (ROS) assays. Liver antioxidant capacity trended higher in short-term KD- and SC + KS-fed versus SC-fed rats, and short-term KD-fed rats exhibited significantly greater serum ketones compared to SC + KS-fed rats indicating that the diet (not KS supplementation) induced ketonemia. In long term-fed rats: (a) serum ketones were significantly greater in KD- versus SC- and SC + KS-fed rats; (b) liver antioxidant capacity and glutathione peroxidase protein was significantly greater in KD- versus SC-fed rats, respectively, while liver protein carbonyls were lowest in KD-fed rats; and (c) gastrocnemius mitochondrial ROS production was significantly greater in KD-fed rats versus other groups, and this paralleled lower mitochondrial glutathione levels. Additionally, the gastrocnemius pyruvate-malate mitochondrial respiratory control ratio was significantly impaired in long-term KD-fed rats, and gastrocnemius mitochondrial quantity was lowest in these animals. Rotarod performance was greatest in KD-fed rats versus all other groups at 2, 4 and 8 months, although there was a significant age-related decline in performance existed in KD-fed rats which was not evident in the other two groups. In conclusion, short- and long-term KD improves select markers of liver oxidative stress compared to SC feeding, although long-term KD feeding may negatively affect skeletal muscle mitochondrial physiology

    Ketogenic diet increases mitochondria volume in the liver and skeletal muscle without altering oxidative stress markers in rats

    No full text
    Ketogenic diets (KD) consist of high fat, moderate protein and low carbohydrates. Studies have suggested that KD may influence oxidative stress by affecting mitochondrial quantity and/or quality, and perhaps lengthen lifespan. Therefore, we determined the effects of KD on multi-organ mitochondria volume and oxidative stress markers in rats. Ten month-old male Fisher 344 rats (n = 8 per group) were provided with one of two isocaloric diets: standard chow (SC) or KD. Rats were euthanized if: a) vitality scores exceeded a score of 16, b) rapid weight loss, or c) veterinarian deemed euthanasia necessary. The median lifespan of rats was higher in KD (762 days) compared to SC (624 days). Citrate synthase activity (i.e. estimate of mitochondria volume) was higher in the liver (p = 0.034) and gastrocnemius (p = 0.041) of KD compared to SC. Liver superoxide dismutase 1 and catalase antioxidant protein levels were higher in KD, albeit not significant (p = 0.094 and p = 0.062, respectively). No significant differences in protein levels of other antioxidants or markers of lipid and protein oxidative damage were observed in either the gastrocnemius, liver, or brain. In summary, KD increased mitochondria volume in liver and gastrocnemius and median lifespan in rats. Additionally, our data show that the increase in mitochondrial volume occurred without changes in oxidative damage or antioxidant protein levels in the gastrocnemius, liver, or brain

    Red Spinach Extract Increases Ventilatory Threshold during Graded Exercise Testing

    No full text
    Background: We examined the acute effect of a red spinach extract (RSE) (1000 mg dose; ~90 mg nitrate (NO 3 − )) on performance markers during graded exercise testing (GXT). Methods: For this randomized, double-blind, placebo (PBO)-controlled, crossover study, 15 recreationally-active participants (aged 23.1 ± 3.3 years; BMI: 27.2 ± 3.7 kg/m2) reported >2 h post-prandial and performed GXT 65–75 min post-RSE or PBO ingestion. Blood samples were collected at baseline (BL), pre-GXT (65–75 min post-ingestion; PRE), and immediately post-GXT (POST). GXT commenced with continuous analysis of expired gases. Results: Plasma concentrations of NO 3 − increased PRE (+447 ± 294%; p < 0.001) and POST (+378 ± 179%; p < 0.001) GXT with RSE, but not with PBO (+3 ± 26%, −8 ± 24%, respectively; p > 0.05). No effect on circulating nitrite (NO 2 − ) was observed with RSE (+3.3 ± 7.5%, +7.7 ± 11.8% PRE and POST, respectively; p > 0.05) or PBO (−0.5 ± 7.9%, −0.2 ± 8.1% PRE and POST, respectively; p > 0.05). When compared to PBO, there was a moderate effect of RSE on plasma NO 2 − at PRE (g = 0.50 [−0.26, 1.24] and POST g = 0.71 [−0.05, 1.48]). During GXT, VO2 at the ventilatory threshold was significantly higher with RSE compared to PBO (+6.1 ± 7.3%; p < 0.05), though time-to-exhaustion (−4.0 ± 7.7%; p > 0.05) and maximal aerobic power (i.e., VO2 peak; −0.8 ± 5.6%; p > 0.05) were non-significantly lower with RSE. Conclusions: RSE as a nutritional supplement may elicit an ergogenic response by delaying the ventilatory threshold

    The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study

    No full text
    Adopting low carbohydrate, ketogenic diets remains a controversial issue for individuals who resistance train given that this form of dieting has been speculated to reduce skeletal muscle glycogen levels and stifle muscle anabolism. We sought to characterize the effects of a 12-week ketogenic diet (KD) on body composition, metabolic, and performance parameters in participants who trained recreationally at a local CrossFit facility. Twelve participants (nine males and three females, 31 ± 2 years of age, 80.3 ± 5.1 kg body mass, 22.9 ± 2.3% body fat, 1.37 back squat: body mass ratio) were divided into a control group (CTL; n = 5) and a KD group (n = 7). KD participants were given dietary guidelines to follow over 12 weeks while CTL participants were instructed to continue their normal diet throughout the study, and all participants continued their CrossFit training routine for 12 weeks. Pre, 2.5-week, and 12-week anaerobic performance tests were conducted, and pre- and 12-week tests were performed for body composition using dual X-ray absorptiometry (DXA) and ultrasound, resting energy expenditure (REE), blood-serum health markers, and aerobic capacity. Additionally, blood beta hydroxybutyrate (BHB) levels were measured weekly. Blood BHB levels were 2.8- to 9.5-fold higher in KD versus CTL throughout confirming a state of nutritional ketosis. DXA fat mass decreased by 12.4% in KD (p = 0.053). DXA total lean body mass changes were not different between groups, although DXA dual-leg lean mass decreased in the KD group by 1.4% (p = 0.068), and vastus lateralis thickness values decreased in the KD group by ~8% (p = 0.065). Changes in fasting glucose, HDL cholesterol, and triglycerides were similar between groups, although LDL cholesterol increased ~35% in KD (p = 0.048). Between-group changes in REE, one-repetition maximum (1-RM) back squat, 400 m run times, and VO2peak were similar between groups. While our n-sizes were limited, these preliminary data suggest that adopting a ketogenic diet causes marked reductions in whole-body adiposity while not impacting performance measures in recreationally-trained CrossFit trainees. Whether decrements in dual-leg muscle mass and vastus lateralis thickness in KD participants were due to fluid shifts remain unresolved, and increased LDL-C in these individuals warrants further investigation
    corecore