4 research outputs found

    scRNA Transcription Profile of Adult Zebrafish Podocytes Using a Novel Reporter Strain

    Get PDF
    Background/Aims: The role of podocytes is well conserved across species from drosophila to teleosts, and mammals. Identifying the molecular markers that actively maintain the integrity of the podocyte will enable a greater understanding of the changes that lead to damage. Methods: We generated transgenic zebrafish, expressing fluorescent reporters driven by the podocin promoter, for the visualization and isolation of podocytes. We have conducted single cell RNA sequencing (scRNA-seq) on isolated podocytes from a zebrafish reporter line. Results: We demonstrated that the LifeAct-TagRFP-T fluorescent reporter faithfully replicated podocin expression in vivo. We were also able to show spontaneous GCaMP6s fluorescence using light sheet (single plane illumination) microscopy. We identified many podocyte transcripts, encoding proteins related to calcium-binding and actin filament assembly, in common with those expressed in human and mouse mature podocytes. Conclusion: We describe the establishment of novel transgenic zebrafish and their use to identify and isolate podocyte cells for the preparation of a scRNA-seq library from normal podocytes. The scRNA-seq data identifies distinct populations of cells and potential gene switching between clusters. These data provide a foundation for future comparative studies and for exploiting the zebrafish as a model for kidney development, disease, injury and repair

    An evaluation of multi-excitation-wavelength standing-wave fluorescence microscopy (TartanSW) to improve sampling density in studies of the cell membrane and cytoskeleton

    Get PDF
    Conventional standing-wave (SW) fluorescence microscopy uses a single wavelength to excite fluorescence from the specimen, which is normally placed in contact with a first surface reflector. The resulting excitation SW creates a pattern of illumination with anti-nodal maxima at multiple evenly-spaced planes perpendicular to the optical axis of the microscope. These maxima are approximately 90 nm thick and spaced 180 nm apart. Where the planes intersect fluorescent structures, emission occurs, but between the planes are non-illuminated regions which are not sampled for fluorescence. We evaluate a multi-excitation-wavelength SW fluorescence microscopy (which we call TartanSW) as a method for increasing the density of sampling by using SWs with different axial periodicities, to resolve more of the overall cell structure. The TartanSW method increased the sampling density from 50% to 98% over seven anti-nodal planes, with no notable change in axial or lateral resolution compared to single-excitation-wavelength SW microscopy. We demonstrate the method with images of the membrane and cytoskeleton of living and fixed cells

    Challenges and advances in optical 3D mesoscale imaging

    Get PDF
    Optical mesoscale imaging is a rapidly developing field that allows the visualisation of larger samples than is possible with standard light microscopy, and fills a gap between cell and organism resolution. It spans from advanced fluorescence imaging of micrometric cell clusters to centimetre-size complete organisms. However, with larger volume specimens, new problems arise. Imaging deeper into tissues at high resolution poses challenges ranging from optical distortions to shadowing from opaque structures. This manuscript discusses the latest developments in mesoscale imaging and highlights limitations, namely labelling, clearing, absorption, scattering, and also sample handling. We then focus on approaches that seek to turn mesoscale imaging into a more quantitative technique, analogous to quantitative tomography in medical imaging, highlighting a future role for digital and physical phantoms as well as artificial intelligence

    Light-sheet mesoscopy with the Mesolens provides fast sub-cellular resolution imaging throughout large tissue volumes

    Get PDF
    Rapid imaging of large biological tissue specimens such as ultra thick sections of mouse brain cannot easily be performed with a standard microscope. Optical mesoscopy offers a solution, but thus far imaging has been too slow to be useful for routine use. We have developed two different illuminators for light-sheet mesoscopy with the Mesolens and we demonstrate their use in high-speed optical mesoscale imaging of large tissue specimens. The first light-sheet approach uses Gaussian optics and is straightforward to implement. It provides excellent lateral resolution and high-speed imaging, but the axial resolution is poor. The second light-sheet is a more complex Airy light-sheet that provides sub-cellular resolution in three dimensions that is comparable in quality to point-scanning confocal mesoscopy, but the light-sheet method of illuminating the specimen reduces the imaging time by a factor of 14. This creates new possibilities for high-content, higher-throughput optical bioimaging at the mesoscale
    corecore