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1.	Abstract	1 

Background/Aims: The role of podocytes is well conserved across species from drosophila to 2 

teleosts, and mammals. Identifying the molecular markers that actively maintain the integrity 3 

of the podocyte will enable a greater understanding of the changes that lead to damage. 4 

Methods: We generated transgenic zebrafish, expressing fluorescent reporters driven by the 5 

podocin promoter, for the visualization and isolation of podocytes. We have conducted single 6 

cell RNA sequencing (scRNA-seq) on isolated podocytes from a zebrafish reporter line. 7 

Results: We demonstrated that the LifeAct-TagRFP-T fluorescent reporter faithfully replicated 8 

podocin expression in vivo. We were also able to show spontaneous GCaMP6s fluorescence 9 

using light sheet (single plane illumination) microscopy. We identified many podocyte 10 

transcripts, encoding proteins related to calcium-binding and actin filament assembly, in 11 

common with those expressed in human and mouse mature podocytes. Conclusion: We 12 

describe the establishment of novel transgenic zebrafish and their use to identify and isolate 13 

podocyte cells for the preparation of a scRNA-seq library from normal podocytes. The scRNA-14 

seq data identifies distinct populations of cells and potential gene switching between clusters. 15 

These data provide a foundation for future comparative studies and for exploiting the zebrafish 16 

as a model for kidney development, disease, injury and repair. 17 

 18 

19 
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2.	Introduction 20 

Located within the glomerular capsule, the podocyte forms the outermost layer of the 21 

glomerular filtration barrier - a key component of the nephron, which is the functional unit of 22 

the kidney (Fig.1). The fundamental importance of podocytes is highlighted by the conserved 23 

nature of podocyte function across a myriad of species [1][2, 3]. Podocytes play a vital role in 24 

filtration, forming a selectively permeable barrier, preventing larger charged proteins within the 25 

glomerular capillaries from passing through into the urinary ultrafiltrate in the capsular space 26 

[4].  27 

Podocytes are highly ramified epithelial cells, which envelope the glomerular capillaries (Fig. 28 

1d,e). The podocyte is composed of three main cellular structures, the cell body, the main 29 

processes and the foot processes (pedicels) that form finger-like projections [5]. These 30 

interdigitate with foot processes of neighbouring podocytes, leaving minute gaps between them. 31 

These gaps, known as slit diaphragms, are a specialised type of intercellular junction, the 32 

formation of which, requires nephrin, and the podocyte-specific podocin, amongst other 33 

proteins [6-8]. Podocin is pivotal to maintaining both the development of lipid rafts and the 34 

structural integrity of the slit diaphragm [9].  35 

Podocytes are often referred to as a type of specialised renin precursor cell. Podocytes can 36 

communicate with one another using neurone-like signalling through the release of 37 

neurotransmitter glutamate, which is released via vesicles comparable to the glutamatergic 38 

signalling system seen in neurones [10]. Calcium ions also play an essential part in podocyte 39 

cell interaction and signalling [11].  40 

Podocyte damage is a common pathology observed in renal disease, such as Focal Segmental 41 

Glomerulosclerosis [12, 13] or diabetic nephropathy [14] - evidence of their vital role in kidney 42 

functionality. Cell function can be adversely affected by exposure to toxins, which disrupt the 43 

organisation of actin filaments within the cells, and lead to podocyte effacement [15, 16] and 44 

proteinuria.  The zebrafish is becoming a key model for in vivo drug screening [17] during 45 

larval kidney development, and adult kidney injury [18, 19]. 46 

The transgenic (tg) line Tg(-2.5nphs2:GCaMP6s,P2A,LifeAct-TagRFP-T) was designed to 47 

specifically express two reporters under the podocin promoter - the calcium indicator, 48 

GCaMP6s [20, 21], which therefore potentially marks early developing or damaged podocytes 49 

[22], together with LifeAct-TagRFP-T, a red fluorescence protein conjoined with LifeAct, 50 

which binds to F-actin [23]. This allows visualisation of the actin filaments that are intimately 51 

involved in the cytoskeletal architecture of the podocyte foot processes [24]. Adult transgenic 52 

zebrafish were used as the source of podocytes, which were FAC sorted and processed for single 53 
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cell RNA sequencing (scRNA-seq), to provide their transcriptional profile.  This was compared 54 

with the profiles from higher organisms.	55 

3.	Materials	and	Methods	56 

Animal Husbandry   57 

All experiments were conducted and approved by the University of Edinburgh Animal Welfare 58 

and Ethical Review Body (AWERB) and in accordance with the UK Home Office Animals 59 

Scientific Procedures Act 1986. Zebrafish (Danio rerio; WIK background) were maintained at 60 

28.5°C [25]. Adult fish were anaesthetized via immersion in 4.2 mg/ml tricaine and the kidney 61 

was harvested at this point.  62 

Generation of Fish Lines  63 

The transgenic zebrafish lines used in this work were Tg(-2.5nphs2:GCaMP6s,P2A,LifeAct-64 

TagRFP-T;cryaa:CFP) and a cross between Tg(-2.5nphs2:KillerRed;cryaa:CFP) and 65 

Tg(flk:EGFP). The transgene constructs were created using gateway cloning (Invitrogen) in an 66 

expression vector carrying the cyan reporter under the eye-specific crystallin, alpha a promoter 67 

(cryaa:CFP). The component parts of the expression vector (Fig. 2a) were a 2.5-kb podocin 68 

(nphs2) promoter, which had previously been shown to direct podocyte-specific expression in 69 

mice [26] driving either the GCaMP6s calcium indicator linked through a P2A cleavage site to 70 

the LifeAct-TagRFP-T or KillerRed. Expression vectors were co-injected with transposase 71 

mRNA, using the Tol2 kit (Invitrogen), into wild type WIK zebrafish embryos.  72 

Microscopy	73 

Incisions were made either side of the abdomen, and skin, swim bladder and internal organs 74 

were peeled back to expose the kidney. The kidney (Fig.1b-c) was peeled away from the 75 

backbone, placed under a cover slip with a drop of phosphate buffered saline, gently 76 

compressed to flatten the sample, sealed and mounted on the DMI8-CS Sp8 confocal 77 

microscope. Images were obtained using a 63x/ 1.4NA oil HC PL APO Cs2 objective with 78 

ALEXA 488 and mCherry filters. 79 

Mesolens 80 

The Mesolens is a giant objective lens with the unique combination of low magnification and 81 

high numerical aperture (4x/0.47) [27]. The lens is designed for confocal imaging of tissue 82 

volumes up to 100 mm3 with sub-cellular resolution throughout. Specimens were mounted in 83 

phosphate buffered saline (Thermo Fisher, GIBCO) within a custom mounting chamber for 84 

long-term immersion [28]. Two laser lines with wavelengths of 488nm and 561nm (Omicron) 85 

at average powers of 3mW and 12mW respectively were used for simultaneous excitation of 86 

fluorescence from EGFP and KillerRed. The fluorescence signals were separated using a 87 
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550nm long-pass dichroic filter (DMLP550R Thorlabs), with the EGFP signal propagating 88 

through a 525/39 bandpass filter (MF525-39) and the KillerRed signal passing through a 89 

600nm long-pass filter (FEL0600, Thorlabs). The fluorescence signals were detected by 90 

individual photomultiplier tubes. Images were acquired with Nyquist sampling in all 91 

dimensions (pixel size of 500nm in xy, z-step size of 3 µm), and each optical section was 92 

averaged over n=2 frames. Images were deconvolved with Huygens Professional version 93 

19.04 (Scientific Volume Imaging, http://svi.nl), using the CMLE algorithm, with a signal-to-94 

noise ratio of 40:1 and 10 iterations. Digital movies zooming into regions of interest were 95 

created using the FIJI distribution of ImageJ [29]. 96 

Selective Plane Illumination Microscopy (SPIM)  97 

Healthy embryos from the Tg(-2.5nphs2:GCaMP6s,P2A,LifeAct-TagRFP-T;cryaa:CFP) line 98 

were treated with 1-phenyl-2-thiourea (PTU) at approximately 8 hpf (hours post fertilisation) 99 

to suppress the development of pigmentation. From 3 dpf (days post fertilisation), larvae were 100 

selected and immersed in mivacurium chloride at 0.5 mg/ml. After 10 minutes, the 101 

immobilised larvae were mounted individually in 1% low melting point agarose in a capillary 102 

tube attached to a syringe. The capillary tube's open end was capped and undisturbed until the 103 

agarose had solidified, holding the larvae in place. The apparatus containing the syringe, the 104 

capillary tube and the immobilised larva was mounted into our custom built SPIM microscope 105 

[30] for imaging. The larva was orientated so that the glomerulus was visible. Images were 106 

obtained using  a 16X 0.8 NA Nikon CFI LWD Plan Fluor water dipping objective 107 

(N16LWD-PF). Laser excitation was at 488 and 561 nm, using a Versalase laser system 108 

(Vortran), as previously published [31]. 109 

Laser power of 11mW was used to orientate the larva without induction of a calcium 110 

response. Laser power of 20mW induced injury in podocytes, and the subsequent presence of 111 

Ca2+ ions was detected by the calcium sensor, GCaMP6s, within the podocytes. The resultant 112 

green fluorescence was recorded over time (acquisition time 0.2s; interval between images 113 

15s).  After imaging, the larva was removed from the capillary tube and allowed to recover 114 

briefly in conditioned water at 28.5 °C and was then fixed for later analysis. 115 

Dissociation of Podocytes from the Kidney  116 

Adult Tg(-2.5nphs2:GCaMP6s,P2A,LifeAct-TagRFP-T;cryaa:CFP) zebrafish were used as the 117 

source of podocytes. Kidneys were dissected as above and transferred to ice-cold Leibowitz-15 118 

(L-15) medium. Cells were dissociated in medium supplemented with the psychrophilic 119 

enzyme, cold activated protease (NATE0633, 20mg/ml), DNAse (400units/ml), Liberase 120 

(85µg/ml) and collagenase IV (2mg/ml) and CaCl2 (5mM), at 6oC for 15 minutes with 121 
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trituration every 5 minutes. The temperature was increased to 28oC for a further 15 minutes, 122 

(again with trituration, but using a smaller diameter pipette tip). Dissociated kidneys were 123 

passed through a 40 µm cell strainer before centrifugation. Cells were resuspended prior to FAC 124 

sorting in PBS with 2% fetal calf serum. A WIK mesonephric kidney was used as an auto-125 

fluorescent control (blue excitation 488nm; emission filter 695/40). Live-dead cell count was 126 

assessed by 4′,6-diamidino-2-phenylindole stain ( DAPI-UV excitation 360nm; emission filter 127 

450/50) and singlets (FSC-A versus SSC-A) were gated for red fluorescence (excitation 561nm; 128 

emission filter 582nm/15-A), using the BD FACS Aria II SORP (Becton Dickinson, Basel, 129 

Switzerland) with a 100µm nozzle. 130 

10x Chromium single cell Library workflow 131 

Single cells were processed using the Chromium™ Single Cell 3′ Library and Gel Bead Kit v2 132 

(10X Genomics, PN-120237) and the Chromium™ Single Cell A Chip Kit (10X Genomics, 133 

PN-120236) as per the manufacturer’s instructions. In brief, single cells were sorted into PBS 134 

+ 2% FBS, and washed once. An estimated 7-10,000 cells were added to each lane of a 10X 135 

chip and partitioned into Gel Beads in emulsion, where cell lysis and barcoded reverse 136 

transcription of RNA occurred, followed by amplification, fragmentation and 5′ adaptor and 137 

sample index attachment. Libraries were sequenced on an Illumina HiSeq 4000. 138 

Transcriptome libraries were mapped to a Danio rerio reference genome constructed from the 139 

zebrafish GRCz11 genome assembly. Briefly, reporter gene coding sequences were fused to 140 

the Ensembl 96 gtf file and the reference genome was built using the cellranger mkref software. 141 

Single cell RNA sequences, with associated UMIs, were aligned to this amended reference 142 

genome using Cell Ranger v2.1.0 Single-Cell Software Suite from 10X Genomics. 143 

The resultant datasets were analysed using the Seurat R package v2.4.3 [32] as per the clustering 144 

workflow. Briefly, genes expressed in fewer than three cells or cells expressing fewer than 200 145 

genes or mitochondrial gene content > 30% of the total UMI count were excluded. We 146 

normalized using the global-scaling “LogNormalize” transformation. Highly variable genes 147 

were identified using Seurat’s ‘FindVariableGenes’ function with default parameters. 148 

Dimensionality was reduced by principal component analysis (PCA). We performed 149 

unsupervised clustering and differential gene expression analyses using SNN graph-based 150 

clustering, and the first 18 principal components as determined by variability in the PC Elbow 151 

Plot. The number of clusters was tuned using the resolution parameter. Heatmaps, t-SNE 152 

visualizations, and violin plots were produced using Seurat functions. Pseudotime between 153 

clusters was assessed using the Monocle workflow in R [33].   154 
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4.	Results	155 

As part of a wider strategy to develop tools for understanding mechanisms underlying renal 156 

damage, we established a series of novel transgenic zebrafish strains, expressing fluorescent 157 

reporters specifically within podocytes. These include strains with the podocin promoter 158 

driving expression of LifeAct-RFP, in which the fluorophore binds to the cytoskeleton; 159 

GCaMP6s, which binds to Ca2+; and KillerRed, through which optogenetic approaches allow 160 

cell specific ablation of podocytes [30]. These strains were crossed with lines expressing 161 

fluorescent reporters marking vasculature or kidney tubules, as required. Representative 162 

images, showing fluorescent podocytes expressing KillerRed or LifeActRFP within the fish 163 

glomeruli, captured using the Mesolens and confocal microscopy respectively, are shown 164 

(Fig.2b,c; Supplementary file S2).  165 

The LifeAct-RFP fluorescent reporter faithfully replicated podocin expression (Fig.2c) and was 166 

restricted to podocytes in both the pronephros and mesonephros (only the latter is shown). 167 

during imaging by light sheet microscopy. We discovered that increasing laser power to 20mW 168 

caused spontaneous podocyte injury in pronephric glomeruli and fluorescence of the calcium 169 

sensor, suggesting Ca2+ uptake/release into the podocyte cytoplasm. Green fluorescence was 170 

seen at multiple locations over the course of the experiment, and exemplary stills are shown 171 

(Fig.2d; full video: Supplementary file S3). 172 

Cell dissociation and FACs sorting 173 

Zebrafish kidneys were initially treated with a cocktail of enzymes, including cold activated 174 

protease, at 6oC. This dissociated the kidney sufficiently to release glomeruli, which were 175 

dissociated further by transferring the mixture to 28oC. The two-stage dissociation protocol 176 

minimised exposure of podocytes to a higher temperature and thus limited cell damage prior to 177 

FAC sorting (For typical run see Supplementary Fig.S1). Eight adult kidneys yielded sufficient 178 

numbers of podocytes for the generation of a 10X scRNA-seq library. Cell Ranger v2.1.0 179 

Single-Cell Software Suite yielded information on approximately 2,200 cells. 180 

Identification of Cell Clusters  181 

Principal component analysis allowed non-linear dimensional reduction of the scRNA-seq data 182 

and tSNE plots were used to group similar cells into clusters, the number of which was adjusted 183 

by altering the resolution. Increase in the resolution parameter sets the granularity of clustering 184 

leading to higher numbers of clusters. Since the mesonephric kidney grows continuously in the 185 

zebrafish, we wanted to separate podocytes spanning a range of stages in development and 186 

maturity. Resolution 0.3 returned five clusters of cells (Fig.3a) and was used in all further 187 

analysis.  188 



8 
 

Violin plots were used to show the expression probability distributions across clusters (Fig.3b). 189 

These plots show that expression of podocin (nphs2), nephrin (nphs1) and podocalyxin-like 190 

(podxl) was observed across all clusters , and was highest in groups 0, 1 and 2. Likewise, the 191 

two reporters LifeActRFP and GCaMP6s were most highly expressed in clusters 0, 1 and 2. 192 

The  overlap of gene expression across clusters could be attributed to the up or downregulation 193 

of specific genes, during podocyte maturation.  Other genes showing a similar distribution were 194 

profilin 2 (pfn2), which positively promotes actin filament assembly, the calcium-binding 195 

protein gene, efhd1, and the transcription factor lm1bb. Genes which showed increased 196 

expression in clusters 3 and/or 4 included the cytokine receptor cxcr4b, cofilin-1-like (cfl1l), 197 

which is involved in actin filament depolymerization and the apoptotic regulator, pmaip1. 198 

Feature plots were used as an alternative way to demonstrate the extent of podocin and nephrin 199 

expression across the clusters in comparison to the expression of the fluorescent reporter genes 200 

(Fig 3c). These again show that podocin is highly expressed across podocytes, while GCaMP6s 201 

and LifeActRFP show lower levels of steady state transcription under the podocin promoter. It 202 

should be noted that cells were sorted using RFP fluorescence, and that podocin is a marker of 203 

mature podocytes. The  scRNA-seq data provide a snapshot of the genes that were actively 204 

transcribed at the time of processing. Although the fluorescent protein was present in the cell 205 

during FAC sorting, this plot suggests that the GCaMP6s  and LifeAct-RFP genes were not very 206 

actively transcribed, or that the transcripts are less stable than the endogenous podocin transcript 207 

(Fig.3b&c). scRNAseq data is deposited at Edinburgh Datashare 208 

(https://doi.org/10.7488/ds/3021). 209 

Comparisons with Gene Expression in alternative species 210 

The gene transcription profile of podocytes identified in our zebrafish scRNA-seq dataset was 211 

compared with corresponding transcription profiles from human [34] and mouse [35, 36] 212 

podocytes. We found very few markers designated ‘early’ from human data apart from the 213 

monocarboxylate transporter, slc16a1a, which was transcribed in a small subset of cluster 0 214 

cells (Fig4a) and the ‘early’ transcription factor, lmx1bb, though this was more widely 215 

distributed through clusters 0, 1 and 2, suggesting it is retained in more mature podocytes. 216 

Additional transcription factors identified were foxd2 and foxc1a (Fig.4b) and mafba (data not 217 

shown). This probably reflects the fact that we FAC sorted podocin-expressing cells, and 218 

podocin is not expressed very early in podocyte development. 219 

Genes expressing calcium-ion binding activity are associated with podocyte development, and 220 

the presence of these genes in a cluster may indicate that it contains young or developing 221 

podocytes. The zebrafish scRNA-seq data identified a number of genes including osteonectin 222 
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(sparc), efhd1, annexins 2a and 13 (anxa2a; anxa13) and S100A10b, which were differentially 223 

expressed between the clusters (Table1). Anxa13 was widely expressed but anxa2a was limited 224 

to podocytes also expressing slc16a1a (proposed early podocytes) or those in clusters 3 (see 225 

Fig.4c) 226 

Genes involved with actin filament binding or assembly are shown in Table 2. These included 227 

myozenin 1b (myoz1b), syndecan 4 (sdc4), myosin light chain 9a (myl9a), profilins 1 and 2 228 

(pfn1; pfn2) and thymosins b1 and b4x (tmsb1; tmsb4x), many of which were differentially 229 

expressed. Of note, tmsb1 and pfn1 were limited to clusters 3 and 4 (Fig4c&d). The other genes 230 

were expressed extensively throughout clusters 0, 1 and 2, and are associated with developing 231 

or mature podocytes.  232 

A large number of ‘late’ podocyte markers [34] were found in the zebrafish dataset, including 233 

vegfaa and vegfab, col4a3 and col4a4, clic2, gadd45a and gsna, all of which were widely 234 

expressed, as was connexin 43, encoded by cx43, which contributes to gap junctions, providing 235 

routes of intracellular diffusion. Of interest, were a number of genes differentially expressed 236 

between clusters 0, 1 and 2 and clusters 3 and 4 (Fig.4).  237 

Podocalyxin-like (podxl), and the transcription factor mafba are both involved in pronephric 238 

glomerular morphogenesis, and were expressed extensively. However, ppdpfa expression, 239 

which is related to cell fate, and cfl1l, which is involved in the regulation of cytoskeletal 240 

dynamics and acts to depolymerise filamentous actin, were found in cluster 3, while pmaip1, 241 

along with the chemo-attractant receptor, cxcr4b, were distributed in clusters 3 and 4. This 242 

suggested that clusters 3 and 4 contain more mature podocytes initiating apoptosis and the 243 

subsequent signalling of clearance by phagocytes [37, 38]. 244 

Pseudotime analysis 245 

Pseudotime analysis using Monocle suggested that there were five distinct states in the cell 246 

expression data, indicating a progression through stages in podocyte development (Fig3d). 247 

We were able to superimpose pseudotime on the Seurat-derived clusters (Fig3e), suggesting 248 

that clusters 3 and 4 are at a later stage in development. This confirms our conclusion that 249 

these clusters may represent aging podocytes earmarked for disposal. It should be noted that 250 

changes in transcription levels do not necessarily translate to changes in protein levels. 251 

	 	252 
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5.	Discussion	253 

The new transgenic zebrafish lines we describe here should prove	useful in the understanding 254 

of podocyte development and injury processes. We have demonstrated that both KillerRed and 255 

LifeAct-RFP faithfully mark podocytes. Notably, we were able to demonstrate Ca2+ uptake or 256 

release into the podocyte cytoplasm, using the GCaMP6s fluorescent reporter, following high 257 

power laser illumination. It is possible that the laser light causes podocyte injury, both apoptosis 258 

and microtears, by mechanisms similar to those described previously in Drosophila epithelial 259 

wounds [39].	260 

As nephrogenesis is a continuous process within the mesonephric adult kidney of zebrafish, it 261 

would not be unusual for podocyte cells at a range of developmental stages to be present.  The 262 

paucity of early markers in the scRNA-seq data suggests that our selection protocol 263 

preferentially isolated more mature podocytes. This is to be expected since the reporters were 264 

driven by the podocin promoter.  265 

By identifying established gene expression for young and mature podocytes, it was possible to 266 

attribute maturity and function to the majority of podocytes within clusters. We surmised that 267 

cluster 0 contained a subset of early podocytes, while clusters 0, 1 and 2 comprised maturing 268 

and developing podocytes. Clusters 3 and 4 contained podocytes which were likely to be 269 

earmarked for apoptosis. Pseudotime analysis largely confirmed our predictions.  270 

Comparison of the zebrafish scRNA-seq data with transcription profiles of human and mouse 271 

podocyte libraries has revealed significant overlap in the respective transcription of genes 272 

associated with transcription factors, calcium ion binding proteins and actin filament assembly. 273 

This adds credence to the belief that the zebrafish is a suitable model for the study of renal 274 

function in healthy and diseased states. For example, the importance of lmx1bb, not only in 275 

podocyte progenitors but also in mature podocytes is borne out by observations in the Lmx1b 276 

knockout mouse. Knockout was lethal at birth, but inducible knockout in adults suggested that 277 

loss of Lmx1b leads to dysregulation of the actin cytoskeleton [40].  278 

There were a number of compelling gene switches between clusters 0, 1, and 2, and clusters 3 279 

and 4. These include the calcium ion-binding proteins, anxa13 and anxa2a (Fig.4c), and the 280 

actin-binding proteins pfn2 and pfn1 (Fig.4e). The apparent switch in expression of thymosin 281 

gene transcription between tmsb4x and tmsb1 (Fig.4d) is interesting. Thymosin maintains the 282 

podocyte cytoskeleton. It has been shown in the mouse that loss of Tmsb4x worsens glomerular 283 

disease by increasing podocyte migration from the glomerular tuft to Bowman’s capsule [41]. 284 

It is possible that the switch in thymosin enhances the normal progression of podocytes as they 285 
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age and are destined for removal. The same applies to the switch from timp2a to timp2b gene 286 

expression (Fig.4f), which may lead to alterations in extracellular matrix deposition, breakdown 287 

and turnover with podocyte senescence [42]. 288 

A limitation of scRNA-seq is that it only shows which genes were active within the cells at the 289 

time of isolation. The gene expression data derived from this scRNA-seq experiment, however, 290 

provides a baseline and allows us to interrogate gene expression in the undamaged podocyte.  291 

Conclusion 292 

These data serve as a platform for future studies to compare normal zebrafish podocyte 293 

transcription profile with that of injured podocytes, for example following exposure to high 294 

power laser  or puromycin amino-nucleoside (PAN) [16], which causes effacement and oedema, 295 

with a view to identifying indicators of injury, novel drug targets for repair and potentially the 296 

inhibition of biological pathways to prevent or slow injury progression.  297 

  298 
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 299 

6.	Appendix	300 

7.	Supplementary	Material	301 

	302 

Supplementary Fig.S1: Typical gating parameters for FACs sort of podocytes on the BD 303 
FACS Aria II SORP. 304 

 305 

 306 

Supplementary file S2: Video taken with mesolens, of a 6mm x6mm optical section, zooming 307 

in to a region of interest, on a kidney squash of the Tg(-2.5nphs2:KillerRed),Tg(flk:GFP) 308 

zebrafish strain, revealing the sub-cellular resolution that is present throughout the entire 309 

dataset. The zoom movie was created using the FIJI distribution of ImageJ. 310 

 311 

Supplementary file S3: Video, linking images (image acquisition 0.2s, taken every 15 312 

seconds), of GCaMP6s fluorescence on illumination of Tg(-2.5nphs2:GCaMP6s,P2A,LifeAct-313 

TagRFP-T) larva with SPIM high power (20mW) laser.	 	314 



13 
 

8.	Acknowledgements 315 

We acknowledge Dr Charlotte Buckley, Mr Finn. Bruton and Mr Aryan Kaveh for assistance 316 
with SPIM; Dr Cass Li and Dr John Wilson-Kanamori for assistance with bioinformatics 317 
analysis, and Dr Alessandro Brombin for assistance with construction of the zebrafish 318 
reference genome. For the movie shown in Supplementary data S1 we thank Eugene Katrukha 319 
(Utrecht University) and Lachlan Whitehead (WEHI) for their zoom macro. We also 320 
acknowledge Dr Carl Tucker and staff at the zebrafish facility. Figure 1 was created using 321 
Mind the Graph platform and BioRender.com. 322 
 323 
Statement	of	Ethics 324 
Animal experiments conform to internationally accepted ARRIVE standards and have been 325 
approved by the local institutional review body and the UK Home Office. 326 

Disclosure	Statement 327 

The authors have no conflicts of interest to declare. 328 

Funding	Sources	329 

CB and JM are supported by the British Heart Foundation Centre of Research Excellence 330 
Award (RE/08/001/23904); SH and KW by MRC/EPSRC DTA OPTIMA EP/L016559/1; and 331 
LM by the Kidney Research UK (RP_026_20180305). G.MC is supported by the Medical 332 
Research Council, grant number MR/K015583/1 and Biotechnology and Biological Sciences 333 
Research Council, grant number BB/P02565X/1. N.C.H. is supported by a Wellcome Trust 334 
Senior Research Fellowship in Clinical Science (ref. 219542/Z/19/Z) 335 
 336 

Author	Contributions 337 

Author contributions were as follows: 338 
Conception or design of the work – SR, CB, LM, JM; 339 
Acquisition or analysis or interpretation of data for the work – CB, LM, GM, KW, MB, SH;  340 
Drafting work or revising it critically for important intellectual content – LM, CB, BC, JM.  341 
Final approval of the version to be published – CB, LM, KW, GM, SH, MB, NH, BC, SR, 342 
JM. 343 
Agreement to be accountable for all aspects of the work - CB, LM, KW, GM, SH, MB, NH, 344 
BC, SR, JM. 345 
 346 



14 
 

9.	References 
 

1 Helmstadter M, Huber TB, Hermle T: Using the Drosophila Nephrocyte to Model 
Podocyte Function and Disease. Frontiers in Pediatrics 2017;5(December):262. DOI: 
10.3389/fped.2017.00262. 
2 Wingert PTK, Jr., Rebecca A: Using Zebrafish to Study Podocyte Genesis During 
Kidney Development and Regeneration. Genesis 2015;27(3):320--31. DOI: 
10.1002/nbm.3066.Non-invasive. 
3 Ichimura K, Sakai T: Evolutionary morphology of podocytes and primary urine-
producing apparatus. Anatomical Science International 2017;92(2):161--72. DOI: 
10.1007/s12565-015-0317-7. 
4 Reiser J, Altintas MM: Podocytes. F1000Research 2016;5:1-19. DOI: 
10.12688/f1000research.7255.1. 
5 Greka A, Mundel P: Cell biology and pathology of podocytes. Annu Rev Physiol 
2012;74:299--323. DOI: 10.1146/annurev-physiol-020911-153238.Cell. 
6 Kramer-Zucker AG, Wiessner S, Jensen AM, Drummond IA: Organization of the 
pronephric filtration apparatus in zebrafish requires Nephrin, Podocin and the FERM domain 
protein Mosaic eyes. Developmental Biology 2005;285(2):316--29. DOI: 
10.1016/j.ydbio.2005.06.038.Organization. 
7 Schwarz K, Simons M, Reiser J, Saleem MA, Faul C, Kriz W, Shaw AS, Holzman 
LB, Mundel P: Podocin, a raft-associated component of the glomerular slit diaphragm, 
interacts with CD2AP and nephrin. Journal of Clinical Investigation 2001;108(11):1621--29. 
DOI: 10.1172/jci12849. 
8 Martin CE, Jones N: Nephrin signaling in the podocyte: An updated view of signal 
regulation at the slit diaphragm and beyond. Frontiers in Endocrinology 2018;9(JUN):1--12. 
DOI: 10.3389/fendo.2018.00302. 
9 Merscher S, Pedigo CE, Mendez AJ: Metabolism, energetics, and lipid biology in the 
podocyte - Cellular cholesterol mediated glomerular injury. Frontiers in Endocrinology 
2014;5(SEP):1--11. DOI: 10.3389/fendo.2014.00169. 
10 Giardino L, Armelloni S, Corbelli A, Mattinzoli D, Zennaro C, Guerrot D, Tourrel F, 
Ikehata M, Li M, Berra S, Carraro M, Messa P, Rastaldi MP: Podocyte glutamatergic 
signaling contributes to the function of the glomerular filtration barrier. Journal of the 
American Society of Nephrology 2009;20(9):1929--40. DOI: 10.1681/ASN.2008121286. 
11 Wieder N, Greka A: Calcium, TRPC channels, and regulation of the actin cytoskeleton 
in podocytes: towards a future of targeted therapies. Pediatric Nephrology 2016;31(7):1047--
54. DOI: 10.1007/s00467-015-3224-1. 
12 D'Agati VD: Pathobiology of focal segmental glomerulosclerosis. Current Opinion in 
Nephrology and Hypertension 2012;21(3):243--50. DOI: 10.1097/MNH.0b013e32835200df. 
13 Shankland SJ: The podocyte's response to injury: Role in proteinuria and 
glomerulosclerosis. Kidney International 2006;69(12):2131--47. DOI: 10.1038/sj.ki.5000410. 
14 Ilatovskaya DV, Levchenko V, Lowing A, Shuyskiy LS, Palygin O, Staruschenko A: 
Podocyte injury in diabetic nephropathy: Implications of angiotensin II - dependent activation 
of TRPC channels. Scientific Reports 2015;5(September):1--10. DOI: 10.1038/srep17637. 
15 Nagata M: Podocyte injury and its consequences. Kidney International 
2016;89(6):1221--30. DOI: 10.1016/j.kint.2016.01.012. 
16 Rider SA, Bruton FA, Collins RG, Conway BR, Mullins JJ: The Efficacy of 
Puromycin and Adriamycin for Induction of Glomerular Failure in Larval Zebrafish Validated 
by an Assay of Glomerular Permeability Dynamics. Zebrafish 2018;15(3):234-42. DOI: 
10.1089/zeb.2017.1527. 



15 
 

17 Westhoff JH, Steenbergen PJ, Thomas LSV, Heigwer J, Bruckner T, Cooper L, 
Tonshoff B, Hoffmann GF, Gehrig J: In vivo High-Content Screening in Zebrafish for 
Developmental Nephrotoxicity of Approved Drugs. Front Cell Dev Biol 2020;8:583. DOI: 
10.3389/fcell.2020.00583. 
18 Huang J, McKee M, Huang HD, Xiang A, Davidson AJ, Lu HA: A zebrafish model of 
conditional targeted podocyte ablation and regeneration. Kidney Int 2013;83(6):1193-200. 
DOI: 10.1038/ki.2013.6. 
19 Hansen KUI, Siegerist F, Daniel S, Schindler M, Iervolino A, Blumenthal A, Daniel 
C, Amann K, Zhou W, Endlich K, Endlich N: Prolonged podocyte depletion in larval 
zebrafish resembles mammalian focal and segmental glomerulosclerosis. FASEB J 
2020;34(12):15961-74. DOI: 10.1096/fj.202000724R. 
20 Chen T-W, Wardill TJ, Sun Y, Pulver SR, Renninger SL, Baohan A, Schreiter ER, 
Kerr RA, Orger MB, Jayaraman V, Looger LL, Svoboda K, Kim DS: Ultrasensitive 
fluorescent proteins for imaging neuronal activity. Nature 2013;499(7458):295--300. DOI: 
10.1038/nature12354. 
21 Badura A, Sun XR, Giovannucci A, Lynch LA, Wang SSH: Fast calcium sensor 
proteins for monitoring neural activity. Neurophotonics 2014;1(2):025008. DOI: 
10.1117/1.NPh.1.2.025008. 
22 Burford JL, Villanueva K, Lam L, Riquier-brison A, Hackl MJ, Pippin J, Shankland 
SJ, Peti-peterdi J: Intravital imaging of podocyte calcium in glomerular injury and disease. 
The Journal of Clinical Investigation 2014;124(5). DOI: 10.1172/JCI71702DS1. 
23 Belyy A, Merino F, Sitsel O, Raunser S: Structure of the Lifeact-F-actin complex. 
PLOS Biology 2020. DOI: 10.1371/journal.pbio.3000925. 
24 Riedl J, Crevenna AH, Kessenbrock K, Yu JH, Bista M, Bradke F, Jenne D, Holak Ta, 
Werb Z, Sixt M, Wedlich-soldner R, Klopferspitz A, Avenue P, Francisco S: Lifeact: a 
versatile marker to visualize F-actin. Nature Methods 2010;5(7):1--8. DOI: 
10.1038/nmeth.1220.Lifeact. 
25 Westerfield M. A Guide for the Laboratory Use of Zebrafish Danio (Brachydanio) 
rerio. Fourth ed. University of Oregon Press; 2007. 
26 He B, Ebarasi L, Hultenby K, Tryggvason K, Betsholtz C: Podocin-Green 
Fluorescence Protein Allows Visualization and Functional Analysis of Podocytes. Journal of 
the American Society of Nephrology 2011;22(6):1019--23. DOI: 10.1681/ASN.2010121291. 
27 McConnell G, Trgrdh J, Amor R, Dempster J, Reid E, Amos WB: A novel optical 
microscope for imaging large embryos and tissue volumes with sub-cellular resolution 
throughout. eLife 2016;5(September):1--15. DOI: 10.7554/eLife.18659. 
28 McConnell G, Amos WB: Application of the Mesolens for subcellular resolution 
imaging of intact larval and whole adult Drosophila. Journal of Microscopy 2018;270(2):252-
-58. DOI: 10.1111/jmi.12693. 
29 Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, Pietzsch T, Preibisch 
S, Rueden C, Saalfeld S, Schmid B, Tinevez JY, White DJ, Hartenstein V, Eliceiri K, 
Tomancak P, Cardona A: Fiji: an open-source platform for biological-image analysis. Nat 
Methods 2012;9(7):676-82. DOI: 10.1038/nmeth.2019. 
30 Buckley C, Carvalho MT, Young LK, Rider SA, McFadden C, Berlage C, Verdon RF, 
Taylor JM, Girkin JM, Mullins JJ: Precise spatio-temporal control of rapid optogenetic cell 
ablation with mem-KillerRed in Zebrafish. Scientific Reports 2017;7(1):5096. DOI: 
10.1038/s41598-017-05028-2. 
31 Kaveh A, Bruton FA, Buckley C, Oremek MEM, Tucker CS, Mullins JJ, Taylor JM, 
Rossi AG, Denvir MA: Live Imaging of Heart Injury in Larval Zebrafish Reveals a Multi-
Stage Model of Neutrophil and Macrophage Migration. Frontiers in Cell and Developmental 
Biology 2020;8(October):1--22. DOI: 10.3389/fcell.2020.579943. 



16 
 

32 Butler A, Hoffman P, Smibert P, Papalexi E, Satija R: Integrating single-cell 
transcriptomic data across different conditions, technologies, and species. Nature 
Biotechnology 2018;36(5):411--20. DOI: 10.1038/nbt.4096. 
33 Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, Morse M, Lennon NJ, Livak 
KJ, Mikkelsen TS, Rinn JL: The dynamics and regulators of cell fate decisions are revealed 
by pseudotemporal ordering of single cells. Nature Biotechnology 2014;32(4):381--86. DOI: 
10.1038/nbt.2859. 
34 Tran T, Lindstrm NO, Ransick A, Brandine GDS, Kim AD, Der B, Peti-peterdi J, 
Smith AD, Grubbs B, McMahon JA, McMahon AP: In vivo developmental trajectories of 
human podocyte development inform in vitro differentiation of pluripotent stem- cell derived 
podocytes. 2019;50(1):102--16. DOI: 10.1016/j.devcel.2019.06.001.In. 
35 Brunskill EW, Georgas K, Rumballe B, Little MH, Potter SS: Defining the molecular 
character of the developing and adult kidney podocyte. PLoS ONE 2011;6(9):1--12. DOI: 
10.1371/journal.pone.0024640. 
36 Kann M, Ettou S, Jung YL, Lenz MO, Taglienti ME, Park PJ, Schermer B, Benzing T, 
Kreidberg JA: Genome-wide analysis of Wilms' tumor 1-controlled gene expression in 
podocytes reveals key regulatory mechanisms. Journal of the American Society of 
Nephrology 2015;26(9):2097--104. DOI: 10.1681/ASN.2014090940. 
37 Orrenius S, Zhivotovsky B, Nicotera P: Regulation of cell death: The calcium-
apoptosis link. Nature Reviews Molecular Cell Biology 2003;4(7):552--65. DOI: 
10.1038/nrm1150. 
38 Orrenius S, Gogvadze V, Zhivotovsky B: Calcium and mitochondria in the regulation 
of cell death. Biochemical and Biophysical Research Communications 2015;460(1):72--81. 
DOI: 10.1016/j.bbrc.2015.01.137. 
39 Shannon EK, Stevens A, Edrington W, Zhao Y, Jayasinghe AK, Page-McCaw A, 
Hutson MS: Multiple Mechanisms Drive Calcium Signal Dynamics around Laser-Induced 
Epithelial Wounds. Biophys J 2017;113(7):1623-35. DOI: 10.1016/j.bpj.2017.07.022. 
40 Burghardt T, Kastner J, Suleiman H, Rivera-Milla E, Stepanova N, Lottaz C, Kubitza 
M, Bger CA, Schmidt S, Gorski Ma: LMX1B is essential for the maintenance of 
differentiated podocytes in adult kidneys. Journal of the American Society of Nephrology 
2013;24(11):1830--48. DOI: 10.1681/ASN.2012080788. 
41 Vasilopoulou E, Kolatsi-Joannou M, Lindenmeyer MT, White KE, Robson MG, 
Cohen CD, Sebire NJ, Riley PR, Winyard PJ, Long DA: Loss of endogenous thymosin beta4 
accelerates glomerular disease. Kidney Int 2016;90(5):1056-70. DOI: 
10.1016/j.kint.2016.06.032. 
42 Thrailkill KM, Bunn RC, Fowlkes JL: Matrix metalloproteinases: their potential role 
in the pathogenesis of diabetic nephropathy. Endocrine 2009;35(1):1--7. DOI: 
10.1007/s12020-008-9114-6.Matrix. 
 

  



17 
 

10.	Figure	Legends	

Fig. 1.  A schematic depiction of (a) an adult zebrafish (Danio rerio); (b) the approximate size 

and location of the zebrafish mesonephros (red shaded area). (c) the structure of the 

mesonephros, depicting the three sections of the zebrafish kidney. d) a highly-branched 

podocyte and e) a podocyte enveloping a glomerular capillary. The foot processes are 

interlaced with those of neighbouring podocytes, leaving tiny gaps in between to form the slit 

diaphragm.  

 

Fig.2. a) The expression vectors containing 2.5kb podocin (nphs2) promoter with GCaMP6s 

calcium indicator and LifeAct-TagRFP red fluorescent reporter or KillerRed; b) a region of 

interest from a confocal mesolens image of the strain  Tg(-2.5nphs2:KillerRed; flk:EGFP). c) 

typical confocal image of strain Tg(-2.5nphs2:GCaMP6s,P2A,LifeAct-TagRFP-T); (d) time 

lapse images of Tg(-2.5nphs2:GCaMP6s,P2A,LifeAct-TagRFP-T) showing GCaMP6s flashes 

(arrowed) across the larval glomeruli (dotted line) 

 

Fig.3. a) tSNE plot of the 5 podocyte cell clusters (resolution set to 0.3), from ‘0’ to ‘4’ and 

colour coded as shown in the legend; b) Violin plots showing expression of genes of interest 

in the five clusters; c) Feature Plots showing the extent of expression of nphs2, nphs1, 

LifeActRFP and GCaMP6s; d) pseudotime plot of expression states in Monocle and e) 

pseudotime mapped onto the Seurat tSNE clusters 

 

Fig.4.  Feature plots showing differentially-expressed pairs of genes across the podocyte cell 

clusters: a) lmx1bb and slc16a1a; b) foxd2 and foxc1a; c) anxa2a and anxa13; d) tmsb1 and 

tmsb4x; e) pfn1 and pfn2; f) timp2a and timp2b; g) podxl and ppdpfa; h) cxcr4b and pmaip1. 

(Per graph: red - high expression gene 1; blue – high expression gene 2; green – high 

expression genes 1 and 2) 
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Table 1 - genes encoding calcium binding proteins. Differential expression lists clusters 
where gene expressed; True (T) or false (F) reflects cluster-specific expression pattern  
 

gene symbol # cells 
Differential 
expression 

cluster 
specific 

efhd1 1900 0,2>3,4 T 
sparc 1870 0,2>3,4 T 
anxa13 1478 0,1,2>3 T 
s100a10b 1225 0>1,3 T 
aif1l 1059  F 
capns1b 956  F 
anxa11b 836  F 
capns1a 609  F 
anxa3b 515  F 
ccdc124 471  F 
anxa4 457  F 
calr 316  F 
cetn4 267  F 
anxa2a 206 3 T 
ccdc47 185  F 
anxa1a 164  F 
calm2a 148  F 
sptan1 139  F 
edem2 63  F 
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Table 2 - genes encoding actin filament binding proteins. Differential expression lists clusters 
where gene expressed; True (T) or false (F) reflects cluster-specific expression pattern 
 

gene symbol # cells 
Differential 
expression 

cluster 
specific 

tmsb4x 2143  F 
myoz1b 1856 0,1,2 T 
sdc4 1730 0,1,4>2>3 T 
myl9a 1224 0,1,2>3,4 T 
pfn1 1157 3,4>0,1,2 T 
aif1l 1059  F 
pfn2 1030  F 
tpm1 722  F 
1qgap2 554  F 
dag1 388  F 
phactr4 280  F 
actr10 229  F 
gmfb 206  F 
wasf2 205  F 
itgb6 167  F 
myo18ab 146  F 
tmsb1 139 3>4 T 
scinlb 119 3 T 
abracl 112 3,4 T 
actr10 117  F 
ywhah 116  F 
wasla 103  F 
macf1a 94  F 
ctnna1 60  F 
itgb2 60 3 T 
parvaa 58  F 
parvab 58  F 
itgb5 57  F 
pls3 56  F 

 
 



d e



(a)

(b) (c)

(d)

100µm 10µm

30µm

2.5kb nphs2 promoter KillerRed

2.5kb nphs2 promoter GCaMPs P2A LifeAct-RFP

poly A

attB4

attB4

attB1

attB1

attB2

attB2

attB3

attB3



(a)

(b)

(c)

(d)

(e)



lmx1bb x slc16a1a(a) (b)

(c) (d)

(e) (f)

(g) (h)

foxd2 x foxc1a

anxa2a x anxa13 tmsb1 x tmsb4x

pfn1 x pfn2 timp2a x timp2b

podxl x ppdpfa cxcr4b x pmaip1


