5,647 research outputs found
Predicted multiply-imaged X-ray AGNs in the XXL survey
We estimate the incidence of multiply-imaged AGNs among the optical
counterparts of X-ray selected point-like sources in the XXL field. We also
derive the expected statistical properties of this sample, such as the redshift
distribution of the lensed sources and of the deflectors that lead to the
formation of multiple images, modelling the deflectors using both spherical
(SIS) and ellipsoidal (SIE) singular isothermal mass distributions. We further
assume that the XXL survey sample has the same overall properties as the
smaller XMM-COSMOS sample restricted to the same flux limits and taking into
account the detection probability of the XXL survey. Among the X-ray sources
with a flux in the [0.5-2] keV band larger than 3.0x10 erg cm
s and with optical counterparts brighter than an r-band magnitude of 25,
we expect ~20 multiply-imaged sources. Out of these, ~16 should be detected if
the search is made among the seeing-limited images of the X-ray AGN optical
counterparts and only one of them should be composed of more than two lensed
images. Finally, we study the impact of the cosmological model on the expected
fraction of lensed sources.Comment: 15 pages, 7 figures, 1 table, accepted for publication in MNRA
An earth pole-sitter using hybrid propulsion
In this paper we investigate optimal pole-sitter orbits using hybrid solar sail and solar electric propulsion (SEP). A pole-sitter is a spacecraft that is constantly above one of the Earth's poles, by means of a continuous thrust. Optimal orbits, that minimize propellant mass consumption, are found both through a shape-based approach, and solving an optimal control problem, using a direct method based on pseudo-spectral techniques. Both the pure SEP case and the hybrid case are investigated and compared. It is found that the hybrid spacecraft allows consistent savings on propellant mass fraction. Finally, is it shown that for sufficiently long missions (more than 8 years), a hybrid spacecraft, based on mid-term technology, enables a consistent reduction in the launch mass for a given payload, with respect to a pure SEP spacecraft
Quantification and Assessment of Interfraction Setup Errors Based on Cone Beam CT and Determination of Safety Margins for Radiotherapy
Introduction To quantify interfraction patient setup-errors for radiotherapy based on cone-beam computed tomography and suggest safety margins accordingly. Material and Methods Positioning vectors of pre-treatment cone-beam computed tomography for different treatment sites were collected (n = 9504). For each patient group the total average and standard deviation were calculated and the overall mean, systematic and random errors as well as safety margins were determined Results The systematic (and random errors) in the superior-inferior, left-right and anterior-posterior directions were: for prostate, 2.5(3.0), 2.6(3.9) and 2.9(3.9) mm; for prostate bed, 1.7(2.0), 2.2(3.6) and 2.6(3.1) mm; for cervix, 2.8(3.4), 2.3(4.6) and 3.2(3.9) mm; for rectum, 1.6(3.1), 2.1(2.9) and 2.5(3.8) mm; for anal, 1.7(3.7), 2.1(5.1) and 2.5(4.8) mm; for head and neck, 1.9(2.3), 1.4(2.0) and 1.7(2.2) mm; for brain, 1.0(1.5), 1.1(1.4) and 1.0(1.1) mm; and for mediastinum, 3.3(4.6), 2.6(3.7) and 3.5(4.0) mm. The CTV-to-PTV margins had the smallest value for brain (3.6, 3.7 and 3.3mm) and the largest for mediastinum (11.5, 9.1 and 11.6mm). For pelvic treatments the means (and standard deviations) were 7.3 (1.6), 8.5 (0.8) and 9.6 (0.8) mm. Conclusions Systematic and random setup-errors were smaller than 5mm. The largest errors were found for organs with higher motion probability. The suggested safety margins were comparable to published values in previous but often smaller studies
Superconducting properties of nanocrystalline MgB thin films made by an in situ annealing process
We have studied the structural and superconducting properties of MgB thin
films made by pulsed laser deposition followed by in situ annealing. The
cross-sectional transmission electron microscopy reveals a nanocrystalline
mixture of textured MgO and MgB with very small grain sizes. A
zero-resistance transition temperature () of 34 K and a zero-field
critical current density () of A/cm were obtained.
The irreversibility field was 8 T at low temperatures, although severe
pinning instability was observed. These bulk-like superconducting properties
show that the in situ deposition process can be a viable candidate for MgB
Josephson junction technologies
Molecular dynamics simulation of the fragile glass former ortho-terphenyl: a flexible molecule model
We present a realistic model of the fragile glass former orthoterphenyl and
the results of extensive molecular dynamics simulations in which we
investigated its basic static and dynamic properties. In this model the
internal molecular interactions between the three rigid phenyl rings are
described by a set of force constants, including harmonic and anharmonic terms;
the interactions among different molecules are described by Lennard-Jones
site-site potentials. Self-diffusion properties are discussed in detail
together with the temperature and momentum dependencies of the
self-intermediate scattering function. The simulation data are compared with
existing experimental results and with the main predictions of the Mode
Coupling Theory.Comment: 20 pages and 28 postscript figure
The Apparent Fractal Conjecture: Scaling Features in Standard Cosmologies
This paper presents an analysis of the smoothness problem in cosmology by
focussing on the ambiguities originated in the simplifying hypotheses aimed at
observationally verifying if the large-scale distribution of galaxies is
homogeneous, and conjecturing that this distribution should follow a fractal
pattern in perturbed standard cosmologies. This is due to a geometrical effect,
appearing when certain types of average densities are calculated along the past
light cone. The paper starts reviewing the argument concerning the possibility
that the galaxy distribution follows such a scaling pattern, and the premises
behind the assumption that the spatial homogeneity of standard cosmology can be
observable. Next, it is argued that to discuss observable homogeneity one needs
to make a clear distinction between local and average relativistic densities,
and showing how the different distance definitions strongly affect them,
leading the various average densities to display asymptotically opposite
behaviours. Then the paper revisits Ribeiro's (1995: astro-ph/9910145) results,
showing that in a fully relativistic treatment some observational average
densities of the flat Friedmann model are not well defined at z ~ 0.1, implying
that at this range average densities behave in a fundamentally different manner
as compared to the linearity of the Hubble law, well valid for z < 1. This
conclusion brings into question the widespread assumption that relativistic
corrections can always be neglected at low z. It is also shown how some key
features of fractal cosmologies can be found in the Friedmann models. In view
of those findings, it is suggested that the so-called contradiction between the
cosmological principle, and the galaxy distribution forming an unlimited
fractal structure, may not exist.Comment: 30 pages, 2 figures, LaTeX. This paper is a follow-up to
gr-qc/9909093. Accepted for publication in "General Relativity and
Gravitation
- …