17 research outputs found

    Drying of Beulah-Zap Lignite

    Get PDF
    Lignite dried in a stream of dry nitrogen at moderate temperatures (20-80-degrees-C) loses water in two distinguishable modes. The first mode represents about 80-85% of the loss of moisture. The second represents the other 15-20% lost under these conditions. The rate follows a unimolecular mechanism (like radioactive decay) for each mode. The activation energy for the first mode is close to the heat of vaporization of water. The rate is dependent upon the gas flow around the sample and the weight (or thickness) of the sample. Work at Amoco Oil Company indicated that the oil yield was higher for the dried coal than for raw or partly dried lignite. Work at Southern Illinois University showed that the mechanism was the same when differential scanning calorimetry was used to follow the kinetics of drying. Other work at the University of Southern Mississippi showed that the physical structure of the lignite (measured by X-rav diffraction) is measurably different for the dried and raw materials

    Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

    Get PDF
    Nitrogen acquisition is a major challenge for herbivorous animals, and the repeated origins of herbivory across the ants have raised expectations that nutritional symbionts have shaped their diversification. Direct evidence for N provisioning by internally housed symbionts is rare in animals; among the ants, it has been documented for just one lineage. In this study we dissect functional contributions by bacteria from a conserved, multi-partite gut symbiosis in herbivorous Cephalotes ants through in vivo experiments, metagenomics, and in vitro assays. Gut bacteria recycle urea, and likely uric acid, using recycled N to synthesize essential amino acids that are acquired by hosts in substantial quantities. Specialized core symbionts of 17 studied Cephalotes species encode the pathways directing these activities, and several recycle N in vitro. These findings point to a highly efficient N economy, and a nutritional mutualism preserved for millions of years through the derived behaviors and gut anatomy of Cephalotes ants

    Author Correction: Herbivorous turtle ants obtain essential nutrients from a conserved nitrogen-recycling gut microbiome.

    Get PDF
    The originally published version of the Supplementary Information file associated with this Article contained an error in Supplementary Figure 3. Panel b was inadvertently replaced with a duplicate of panel a. The error has now been fixed and the corrected version of the Supplementary Information PDF is available to download from the HTML version of the Article

    Size Doesn't Matter: Towards a More Inclusive Philosophy of Biology

    Get PDF
    notes: As the primary author, O’Malley drafted the paper, and gathered and analysed data (scientific papers and talks). Conceptual analysis was conducted by both authors.publication-status: Publishedtypes: ArticlePhilosophers of biology, along with everyone else, generally perceive life to fall into two broad categories, the microbes and macrobes, and then pay most of their attention to the latter. ‘Macrobe’ is the word we propose for larger life forms, and we use it as part of an argument for microbial equality. We suggest that taking more notice of microbes – the dominant life form on the planet, both now and throughout evolutionary history – will transform some of the philosophy of biology’s standard ideas on ontology, evolution, taxonomy and biodiversity. We set out a number of recent developments in microbiology – including biofilm formation, chemotaxis, quorum sensing and gene transfer – that highlight microbial capacities for cooperation and communication and break down conventional thinking that microbes are solely or primarily single-celled organisms. These insights also bring new perspectives to the levels of selection debate, as well as to discussions of the evolution and nature of multicellularity, and to neo-Darwinian understandings of evolutionary mechanisms. We show how these revisions lead to further complications for microbial classification and the philosophies of systematics and biodiversity. Incorporating microbial insights into the philosophy of biology will challenge many of its assumptions, but also give greater scope and depth to its investigations

    The Spitzer Microlensing Program As A Probe For Globular Cluster Planets: Analysis Of Ogle-2015-BLG-0448

    Get PDF
    The microlensing event OGLE-2015-BLG-0448 was observed by Spitzer and lay within the tidal radius of the globular cluster NGC 6558. The event had moderate magnification and was intensively observed, hence it had the potential to probe the distribution of planets in globular clusters. We measure the proper motion of NGC 6558 (μcl(N,E)=(+0.36±0.10,+1.42±0.10)  mas  yr1{{\boldsymbol{\mu }}}_{\mathrm{cl}}(N,E)=(+0.36\pm 0.10,+1.42\pm 0.10)\;{\rm{mas}}\;{{\rm{yr}}}^{-1}) as well as the source and show that the lens is not a cluster member. Even though this particular event does not probe the distribution of planets in globular clusters, other potential cluster lens events can be verified using our methodology. Additionally, we find that microlens parallax measured using Optical Gravitational Lens Experiment (OGLE) photometry is consistent with the value found based on the light curve displacement between the Earth and Spitzer
    corecore