54 research outputs found

    Hyperspectral microarray scanning: impact on the accuracy and reliability of gene expression data

    Get PDF
    BACKGROUND: Commercial microarray scanners and software cannot distinguish between spectrally overlapping emission sources, and hence cannot accurately identify or correct for emissions not originating from the labeled cDNA. We employed our hyperspectral microarray scanner coupled with multivariate data analysis algorithms that independently identify and quantitate emissions from all sources to investigate three artifacts that reduce the accuracy and reliability of microarray data: skew toward the green channel, dye separation, and variable background emissions. RESULTS: Here we demonstrate that several common microarray artifacts resulted from the presence of emission sources other than the labeled cDNA that can dramatically alter the accuracy and reliability of the array data. The microarrays utilized in this study were representative of a wide cross-section of the microarrays currently employed in genomic research. These findings reinforce the need for careful attention to detail to recognize and subsequently eliminate or quantify the presence of extraneous emissions in microarray images. CONCLUSION: Hyperspectral scanning together with multivariate analysis offers a unique and detailed understanding of the sources of microarray emissions after hybridization. This opportunity to simultaneously identify and quantitate contaminant and background emissions in microarrays markedly improves the reliability and accuracy of the data and permits a level of quality control of microarray emissions previously unachievable. Using these tools, we can not only quantify the extent and contribution of extraneous emission sources to the signal, but also determine the consequences of failing to account for them and gain the insight necessary to adjust preparation protocols to prevent such problems from occurring

    Isolation of quiescent and nonquiescent cells from yeast stationary-phase cultures

    Get PDF
    Quiescence is the most common and, arguably, most poorly understood cell cycle state. This is in part because pure populations of quiescent cells are typically difficult to isolate. We report the isolation and characterization of quiescent and nonquiescent cells from stationary-phase (SP) yeast cultures by density-gradient centrifugation. Quiescent cells are dense, unbudded daughter cells formed after glucose exhaustion. They synchronously reenter the mitotic cell cycle, suggesting that they are in a G0 state. Nonquiescent cells are less dense, heterogeneous, and composed of replicatively older, asynchronous cells that rapidly lose the ability to reproduce. Microscopic and flow cytometric analysis revealed that nonquiescent cells accumulate more reactive oxygen species than quiescent cells, and over 21 d, about half exhibit signs of apoptosis and necrosis. The ability to isolate both quiescent and nonquiescent yeast cells from SP cultures provides a novel, tractable experimental system for studies of quiescence, chronological and replicative aging, apoptosis, and the cell cycle

    Exploiting Amino Acid Composition for Predicting Protein-Protein Interactions

    Get PDF
    Computational prediction of protein interactions typically use protein domains as classifier features because they capture conserved information of interaction surfaces. However, approaches relying on domains as features cannot be applied to proteins without any domain information. In this paper, we explore the contribution of pure amino acid composition (AAC) for protein interaction prediction. This simple feature, which is based on normalized counts of single or pairs of amino acids, is applicable to proteins from any sequenced organism and can be used to compensate for the lack of domain information.AAC performed at par with protein interaction prediction based on domains on three yeast protein interaction datasets. Similar behavior was obtained using different classifiers, indicating that our results are a function of features and not of classifiers. In addition to yeast datasets, AAC performed comparably on worm and fly datasets. Prediction of interactions for the entire yeast proteome identified a large number of novel interactions, the majority of which co-localized or participated in the same processes. Our high confidence interaction network included both well-studied and uncharacterized proteins. Proteins with known function were involved in actin assembly and cell budding. Uncharacterized proteins interacted with proteins involved in reproduction and cell budding, thus providing putative biological roles for the uncharacterized proteins.AAC is a simple, yet powerful feature for predicting protein interactions, and can be used alone or in conjunction with protein domains to predict new and validate existing interactions. More importantly, AAC alone performs at par with existing, but more complex, features indicating the presence of sequence-level information that is predictive of interaction, but which is not necessarily restricted to domains

    Identification of a small molecule yeast TORC1 inhibitor with a flow cytometry-based multiplex screen

    Get PDF
    TOR (target of rapamycin) is a serine/threonine kinase, evolutionarily conserved from yeast to human, which functions as a fundamental controller of cell growth. The moderate clinical benefit of rapamycin in mTOR-based therapy of many cancers favors the development of new TOR inhibitors. Here we report a high throughput flow cytometry multiplexed screen using five GFPtagged yeast clones that represent the readouts of four branches of the TORC1 signaling pathway in budding yeast. Each GFP-tagged clone was differentially color-coded and the GFP signal of each clone was measured simultaneously by flow cytometry, which allows rapid prioritization of compounds that likely act through direct modulation of TORC1 or proximal signaling components. A total of 255 compounds were confirmed in dose-response analysis to alter GFP expression in one or more clones. To validate the concept of the high throughput screen, we have characterized CID 3528206, a small molecule most likely to act on TORC1 as it alters GFP expression in all five GFP clones in an analogous manner to rapamycin. We have shown that CID 3528206 inhibited yeast cell growth, and that CID 3528206 inhibited TORC1 activity both in vitro and in vivo with EC50s of 150 nM and 3.9 μM, respectively. The results of microarray analysis and yeast GFP collection screen further support the notion that CID 3528206 and rapamycin modulate similar cellular pathways. Together, these results indicate that the HTS has identified a potentially useful small molecule for further development of TOR inhibitors

    Multivariate curve resolution of time course microarray data

    Get PDF
    BACKGROUND: Modeling of gene expression data from time course experiments often involves the use of linear models such as those obtained from principal component analysis (PCA), independent component analysis (ICA), or other methods. Such methods do not generally yield factors with a clear biological interpretation. Moreover, implicit assumptions about the measurement errors often limit the application of these methods to log-transformed data, destroying linear structure in the untransformed expression data. RESULTS: In this work, a method for the linear decomposition of gene expression data by multivariate curve resolution (MCR) is introduced. The MCR method is based on an alternating least-squares (ALS) algorithm implemented with a weighted least squares approach. The new method, MCR-WALS, extracts a small number of basis functions from untransformed microarray data using only non-negativity constraints. Measurement error information can be incorporated into the modeling process and missing data can be imputed. The utility of the method is demonstrated through its application to yeast cell cycle data. CONCLUSION: Profiles extracted by MCR-WALS exhibit a strong correlation with cell cycle-associated genes, but also suggest new insights into the regulation of those genes. The unique features of the MCR-WALS algorithm are its freedom from assumptions about the underlying linear model other than the non-negativity of gene expression, its ability to analyze non-log-transformed data, and its use of measurement error information to obtain a weighted model and accommodate missing measurements
    • …
    corecore