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Abstract 

 
High throughput instruments and analysis techniques are required in order to make good use of the genomic 
sequences that have recently become available for many species, including humans. These instruments and methods 
must work with tens of thousands of genes simultaneously, and must be able to identify the small subsets of those 
genes that are implicated in the observed phenotypes, or, for instance, in responses to therapies. Microarrays 
represent one such high throughput method, which continue to find increasingly broad application. This project has 
improved microarray technology in several important areas. First, we developed the hyperspectral scanner, which 
has discovered and diagnosed numerous flaws in techniques broadly employed by microarray researchers. Second, 
we used a series of statistically designed experiments to identify and correct errors in our microarray data to 
dramatically improve the accuracy, precision, and repeatability of the microarray gene expression data. Third, our 
research developed new informatics techniques to identify genes with significantly different expression levels. 
Finally, natural language processing techniques were applied to improve our ability to make use of online literature 
annotating the important genes. In combination, this research has improved the reliability and precision of laboratory 
methods and instruments, while also enabling substantially faster analysis and discovery. 
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Introduction 
 
The analysis of a complex system within an environment that is only subject to incomplete 
control is nearly impossible without some way to measure a large fraction of the system’s 
internal state information. As a result, it is only with the recent advent of high throughput 
measurement technologies able to simultaneously measure tens of thousands of molecular 
concentrations that systems biology is really a possibility. As an example of the scope of this 
problem, consider that eukaryotic cells typically have on the order of ten thousand genes, each of 
which is likely to have several alternative splicing variants coding for the protein building blocks 
of the cell. These proteins undergo post-translational modifications and have multiple 
phosphorylations such that there are likely to be hundreds of thousands, or perhaps as many as a 
million variants. Hence the future of systems biology relies critically on high throughput 
instruments, such as microarrays and dual mass spectrometers. The research reported here 
addresses three important issues for such high throughput measurements: improved 
instrumentation for making the measurements, better methods to improve the precision of the 
measurements, and to avoid confounding main effects with process artifacts, and finally 
improved informatics to deal with the large volume of information from these techniques. 
 
In the first section we present a new hyperspectral scanner, which is able to measure the 
complete spectra for each pixel, a major advance over available commercial scanners that can 
only measure light intensity through (typically two to four) filters. Importantly, this instrument 
has discovered major problems due to previously unrecognized contaminations that are often 
introduced in the manufacturing of the microarrays. Beyond being an important diagnostic tool, 
this hyperspectral scanner offers the potential to simultaneously measure many experimental 
conditions by using more than two fluorophores at a time, which could greatly increase the 
sensitivity of the experiments by controlling the “between array” errors. 
 
Direct measurement errors are only one way that precision is lost. Experimental designs and 
continuous process control methods are essential to making the very best measurements possible 
for these very expensive experiments. Section two discusses these issues and presents particular 
results and findings. 
 
Of course, the goal of better methods and instruments is to enable deeper understanding of the 
biology. The analysis tools and informatics systems developed to discover meaning in 
collections of these large-scale experiments are presented in section three. Here we address the 
structure of the typical data, its normalization, and ways to find important relationships.  
 
Throughout each section we will present results and examples from our research to motivate the 
specific approaches, algorithms and analysis methods we have developed. We begin with 
hyperspectral scanner and microarray contamination issues, an important discovery enabled by 
this new instrument. 
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Section 1. Hyperspectral imaging of microarrays 
 
Microarray technology is a relatively recent experimental development that allows high-
throughput analysis of relative gene expressions of thousands of genes of an organism. The full 
details of the microarray process can be found in Schena.[1] In the standard microarray 
experiment, single-strand DNA gene fragments of known sequence are printed on glass slides in 
small spots on 150 to 250 µm centers. Up to 20,000 gene fragments (gene probes) can be printed 
on each glass slide. The microarray technology generally makes binary comparisons of gene 
expression from an organism for each microarray slide. The binary comparisons can be between 
cells in two different states or conditions such as between normal and abnormal (e.g., normal vs. 
cancerous cells). Messenger RNA (mRNA) is generated when a gene is being expressed in the 
cell, and the mRNA is subsequently extracted from the cells in the two states to be compared 
during the microarray experiment. The amount of mRNA is assumed to be proportional to the 
extent of gene expression of the cells in the two states. The mRNA from each cell type is then 
translated into single-strand cDNA (gene targets) and each labeled with a different fluorescent 
tag during the translation. The two labeled cDNA solutions are allowed to hybridize to the 
printed DNA attached to the microarray slide. The labeled hybridized microarray slide is scanned 
with one of several available commercial microarray scanners that are very sensitive optical filter 
fluorescence imaging systems. Specialized software is used to quantify the emission signal from 
the fluorescent label in the spot and the background signal around the spot. Ratios of the 
background-corrected and normalized signals yield quantitative measures of which genes are 
enhanced and which are repressed in the test sample relative to the control sample. 
 
Microarray experiments have been demonstrated to be very effective for exploring the relative 
gene expressions of organisms under various conditions. Results from microarray experiments 
can be used to comprehensively and systematically explore the genome,[2] to identify genes 
involved in diseases[3], and to identify genetic predictors of treatment outcomes for cancer 
cells.[4] Although the microarray experiments have been extremely useful in expanding our 
knowledge of gene expression, microarray experiments can still benefit from improvements in 
the technology. For example, studies have demonstrated that the repeatability of microarray 
experiments within a microarray is much better than the reproducibility of the data between 
microarrays.[5] This variability limits the reliability of microarray experiments and as a result 
differences in gene expression less than a factor of two are generally not currently considered 
significant. Unfortunately, differences in gene expression for genes of interest are often expected 
to result in expression differences of less than a factor of two. In addition, the low expressed 
genes are often those that are of greatest interest, but the accuracy of measuring the low 
expressed genes is known to be less than that of highly expressed genes. Another significant 
limitation of current microarray experiments is that they are typically performed as binary 
experiments that limit the comparison of cells to only two states for each microarray slide 
studied. 
 
Commercial microarray scanners generate separate high-spatial resolution images of each color 
filter channel on the microarray slide (which corresponds to each of the fluorescent labels).[6] 
All the currently available commercial microarray scanners use a separate laser or filtered white 
light source to excite each fluorophore tag. In addition, the emission of each fluorescent label is  
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separately monitored with the use of a single optical filter with the filtered light impinging on a 
photomultiplier tube or a CCD array detector. Because of the univariate nature of the current 
commercial scanner for each detected fluorescent label, the selection of dyes available for use is 
limited to those that have widely wavelength-separated absorption and emission spectra. The 
final signal obtained from the microarray for each spot involves the measurement and subtraction 
of the background emission (often measured from the emission of pixels surrounding the spot) 
from the total signal of the spot. High spatial resolution (≤ 10 µm) and sophisticated spot finding 
software are both required to accurately separate the DNA spot emission from that of the 
background. The assumption that must be made for the background correction to be valid is that 
the background emission obtained from the slide off the spot is the same as the background 
emission under the spot. In addition, any fluorescence from the glass, impurities, contaminants, 
etc. whose emissions overlap with the selected fluorescent labels will cause errors in determining 
the quantitative ratios of gene expressions if these sources of emission are not properly 
accounted for in the background correction procedure. We have demonstrated large quantitative 
errors in microarrays due to the presence of contaminant emission in the green channel of the 
scanner, and these results are the documented in a journal publication that was the result of this 
Laboratory Directed Research and Development (LDRD) project.[7]  
 
Many of the limitations of the current commercial microarray scanners could be alleviated if the 
entire emission spectrum of each pixel were obtained and the spectral data quantified with 
appropriate multivariate analysis methods. Therefore, we have designed, built and characterized 
a new hyperspectral microarray scanner. There have been several previous reports of 
hyperspectral microarray scanners in the literature.[8-10] However, these scanners do not 
currently have the sensitivity of the commercial scanners, and because of the multivariate 
methods used to analyze the spectra from these scanners, they too are subject to quantitative 
errors if unexpected sources of emission are present in the data. The design of our new 
hyperspectral microarray scanner when coupled with analysis of the hyperspectral images with 
powerful multivariate curve resolution (MCR) analysis circumvents these limitations while 
maintaining the sensitivity level of current commercial scanners. It is the high-throughput, 
sensitive detection, and the use of MCR analysis that sets our system apart from others that have 
been developed. The MCR analysis in particular allows our system to yield reliable, accurate 
results even in those cases where unexpected sources of emission are present or where the 
spectrum of the dyes or glass substrate are different than expected. MCR analysis is a powerful 
multivariate method that enables us to perform quantitative spectroscopy on spectra without the 
use of standards. The implementation of MCR that we use here is a constrained alternating least 
squares analysis that iteratively solves for the pure emission spectra and the relative 
concentrations of each of the emitting components.[11-15]  The concentration maps that can be 
outputted from the MCR analysis represent 2D images giving the spatial location and the relative 
concentration separately of each of the emitting sources. Emitting components can be separated 
and their concentrations accurately determined even when the spectra of the species emitting are 
highly overlapped spectrally and their locations on the slide are spatially coincident. Therefore, 
MCR is ideally suited for quantitative hyperspectral image analysis especially when some or all 
of the emitting species are not known. In the progression of this LDRD research, we developed 
new capabilities of MCR with the application of rigorous equality constraints that were required 
to achieve the results reported in this document. The details of these important new capabilities 
of MCR and example results have been documented in a recent journal paper.[21] 
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Our new scanner also offers the possibility of higher throughput microarray experiments by 
allowing many fluorescent labels to be used simultaneously on each slide. The use of 
multivariate analysis algorithms means that the fluorescent labels do not have to be widely 
separated in their absorption or emission characteristics. We will demonstrate that the new 
scanner has greater accuracy, higher sensitivity, and superior dynamic range than commercial 
scanners. The use of MCR analysis of the spectral data allows us to discover all emission sources 
on the microarray and to obtain relative concentration maps of each emission source whether the 
emission is from the fluorescent label, glass, or contaminants. The ability to obtain concentration 
maps of each emission species at each pixel means that separate background correction is not 
required with the new scanner. Because of these important features of the new scanner, it can be 
used not only for improved microarray analysis but also for improving the microarray 
technology by aiding the understanding of anomalous microarray data. 
 
Of course, more accurate measurement of the microarray slides with the hyperspectral imaging 
system will not be an advantage if other sources of experimental variability dominate the 
biological signal that is being measured. Initial microarray experiments performed at the 
University of New Mexico demonstrated a significant lack of reproducibility even though 
published experimental protocols were carefully followed. Therefore, as part of this project, we 
developed experimental designs and performed numerous experiments to identify and correct 
experimental sources of variability that were present in our microarray data. Some of the results 
and conclusions from these designed experiments will be presented in this report. 
 

Hyperspectral experiments 

Hyperspectral Microarray Scanner Design and Operation 

Full details of the design, operation, and characterization of the hyperspectral scanner have been 
submitted as a journal paper to Applied Optics: Optical Technology and Biomedical Optics.[16] 
Therefore, only a summary of the design, operation, and performance characteristics of the 
hyperspectral scanner will be given here. The new hyperspectral scanner is a “push-broom” 
design with line focusing of the excitation laser. Detailed discussion of the design of the scanner 
will be the subject of a later paper. A solid-state laser excitation at 532 nm was used for all the 
data presented in this paper. The laser light is focused to a line and reflected off a dichroic beam 
splitter into a 10X microscope objective to yield an excitation line with dimensions of 1 mm x 10 
µm on the microarray slide. The emitted light from the microarray is passed through the 
microscope objective, through the dichroic beam splitter, and through a holographic notch filter 
to eliminate the laser emission. The filtered and focused line emission is imaged onto the slit of 
an imaging grating spectrometer. The line is dispersed by the imaging spectrometer onto a 
thermo-electrically cooled 2D CCD detector equipped with on chip electron multiplication gain. 
The electron multiplication gain serves to significantly enhance the signal relative to the read 
noise, and greatly improves the signal-to-noise ratio of the detector at low signals. The detector 
outputs a 16-bit digital signal. The current spectral range monitored by the system is 490 to 900 
nm, but this range can be modified with changes in the spectrometer grating. 
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The microarray slide is mounted on an x-y positioning system. The second spatial dimension of 
the image is obtained by moving the slide under the microscope objective. Triggering signals 
from the positioners are sent to the camera to coordinate the collection of the emission signal 
with the position of the slide in 10 µm increments. Larger sections of the slide are imaged by 
stitching together successive 1 mm-wide scanned image sections. 
 
The image data are corrected for the curvature of the imaged line on the CCD and calibrated for 
wavelength using the emission lines from low-pressure krypton and neon lamps collected 
through the optical axis of the scanner. Both lamps are necessary to obtain adequate signal across 
the spectral region of interest. The curvature is fit by least squares cubic polynomial fits of the 
peak locations of at least 15 emission lines from the lamps. A different cubic fit is found for each 
of the calibration lamp emission lines since the curvature varies with the y-position on the CCD 
camera and wavelength.  Intensity variations along the length of the laser line projected on the 
sample are corrected for by normalizing the emission to the intensity of the laser line reflected 
from a clean glass slide. No attempts were made to calibrate the spectral emission to a 
radiometric source. 
 
Many experiments were conducted using printed DNA microarrays and results from the 
hyperspectral scanner were compared to an Axon 4000B microarray scanner equipped with 532 
and 633 nm laser excitation. The experimental procedure is captured in brief here. Microarray 
yeast gene expression slides were printed and hybridized with directly labeled Cy3 and Cy5 
fluorescent dyes as described in Martinez, et al.[7]  Commercially printed yeast microarrays and 
in-house printed microarrays (printed by our collaborators at UNM Department of Biology) were 
scanned by both the Axon and our hyperspectral microarray scanners to identify fluorescence 
from the glass, labeled DNA, and from contaminants if present. Each hybridized and labeled 
slide was scanned in the same region by both the Axon and hyperspectral microarray scanners. 
The 16-bit TIFF images of each channel from the Axon scanner were analyzed with the GenePix 
Pro software (Version 4.0 and Version 5.0) to identify spots and calculate spot intensities and 
ratios. Our multivariate analysis generated pure component concentration images as discussed in 
the future sections. These concentration images were exported from our software in 16-bit TIFF 
format and DNA spots were analyzed using the GenePix Pro software just as the commercial 
scanner images were. 
 
In order to test the ability of the hyperspectral scanner and MCR analysis to quantify highly 
overlapped fluorophores, we printed Cy3 and Alexa 532 fluorophores on a microarray slide. The 
diluted pure dyes and 50/50 mixtures of the two dyes were printed along with two 10-fold serial 
dilutions of the pure dyes and the 50/50 mixture. This slide was then scanned with the 
hyperspectral scanner and the resulting spectra analyzed with our MCR software. 
 

Multivariate data analysis  

The MCR software was developed in house using Matlab Version 6.1 (The MathWorks, Inc. 
Natick, MA). Some of the capabilities of the software are described in more detail in the Theory 
Section. The MCR analysis was performed on Pentium 4 based personal computers that are 1  



 11

GHz or faster equipped with 1-2 GBytes of memory. The output of the MCR software includes 
pure-component emission spectra and relative concentration maps for each emission source. By 
always performing the MCR analysis on each slide, we were able to discover any unanticipated 
emission sources on the microarray and to observe unusual changes such as shifts in the expected 
fluorescence signals of the fluorophores. The MCR results presented in this paper are based on 
scans from just a portion of the slide (generally about 40,000 spectra). In these cases, the MCR 
algorithm generally converged after 20-100 iterations in a few minutes. Memory limitations 
originally restricted our analysis to these small spatial regions of the slides. However, recent 
enhancements to the MCR codes using principal component spectral and wavelet spatial 
compression and out-of-core-memory algorithms allow us to process and analyze spectral 
images obtained from the entire microarray with reasonable computation times that approach the 
time to simply read the data. Compression factors of nearly 200,000 have been achieved without 
loss of spectral or spatial resolution of the resulting pure-component spectra or 2D component 
concentration maps. After analysis of the hyperspectral images with the MCR software, the 
resulting 16-bit TIFF images of the concentration maps were imported to the GenePix software 
for further analysis. 
 

Statistical Analysis of Microarray Slide Variation  

 
Unfortunately microarray experiments are often dominated by variation other than the biology of 
interest that can mask the true gene expression relationships. In order to identify, quantify, 
understand, and correct sources of experimental variability in printed cDNA microarray 
experiments, a series of microarray repeat experiments were designed and performed at the 
University of New Mexico Biology Department. The microarrays were CMT S288C yeast v. 
1.32 arrays (Corning) and were hybridized using the protocols described in Ref. 7. Only the 
signal intensities of the Cy3 dye were monitored due to the lack of Cy5 signal in the microarrays. 
The median responses of the Cy3 signal were analyzed without background correction since the 
background intensities were relatively constant and small in these data. Three replicate samples 
Sets A, B, and C were monitored from three different microarray specimens that corresponded to 
time course yeast samples taken at 10, 40, and 50 minutes. The experiments were designed to 
monitor and quantify the reproducibility and repeatability of operator, scanner, and hybridization 
on the Cy3 signal from the microarrays over short and long times. Two groups of data were 
obtained as follows: 
 
Early data: Operator 1, Single replicate of set A; Operator 2, two replicates of set B; and 
Operator 3, two replicates of set C all taken within a period of one week. Later data were 
obtained one month later as follows: Operator 1, two replicates of sets {A, B, C}; Operator 2, 
single replicate of sets {A, B, C}; and Operator 3, two replicates of sets {A, B, C}. Short-term 
and long-term replicate-to-replicate variations were examined for a fixed operator and a fixed 
slide and between operators. In addition, operator-to-operator and slide-to-slide variations were 
examined. All the comparisons examined the variation separately for each of the 12 blocks 
located on the slides in order to investigate spatial effects on the slides. The replicated data were 
examined by fitting the two-way comparison data sets using robust linear regressions within 
blocks. 
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Theory 

Multivariate curve resolution (MCR) 

The MCR methods used in this work are based on constrained alternating least squares 
algorithms.[11] In all cases, rigorous least squares methods are used. The algorithms are based 
on classical least squares (CLS) calibration and prediction methods.[17, 18] In the following 
discussion, matrices are represented as bold uppercase letters, column vectors as bold lowercase 
letters, row vectors are represented as transposed column vectors, transposed matrices and 
vectors are denoted by a superscript T, and the pseudoinverse of a matrix is denoted by a 
superscript +. The CLS model for the fluorescence data assumes an additive linear model 
following the relationship, 

D = CST + E  (1) 
where D is the n × p matrix of n spectra each containing p intensities as a function of 
wavelength, C is the n × m matrix of component concentrations where m corresponds to the 
number of components, ST is the m × p matrix of pure-component spectra, and E is the n × p 
matrix of spectral residuals. 
 
Principal component analysis (PCA) is generally used to determine the number of pure spectral 
species present in the data.[19]  Often a semi-log plot of the singular values as a function of 
component number results in a clear demarcation to specify the number of components to 
include in the MCR analysis. We have found that if the wrong number of components is chosen, 
realistic pure emission spectra are not obtained. Once the number of pure emission spectra is 
chosen, we initiate the MCR algorithm with a guess for ST. Initial guesses for the pure spectra in 
ST can be random numbers, principal component results, reasonable spectral shapes based upon 
known pure-component spectra, or pure-component spectra derived from previous MCR analysis 
of similar data. The CLS estimate for C, denoted Ĉ , is obtained from 

+= )(ˆ TSDC   (2) 
Once Ĉ  has been obtained, the CLS estimate for ST can be obtained from 

DCS +=Tˆ   (3) 
However, there are infinite possible solutions to Eq. 2 and 3 due to rotational ambiguity of the 
solution. We can limit the range of possible solutions by employing constraints. Since the 
concentrations and pure-component spectra should be all nonnegative, we employ a 
nonnegatively constrained alternating least squares algorithm similar to that presented by 
Bro.[11] Improvements in the efficiency of Bro’s algorithms have been implemented to 
dramatically reduce computation times. These improvements will be the subject of a future 
paper. The solutions to Eq. 2 and 3 are solved iteratively until the sum of squared spectral 
residuals converges to a specified tolerance level. 
 
We also apply equality constraints when appropriate[20] to further limit the range of possible 
solutions to Eq. 2 and 3. The method of direct elimination is used when employing equality 
constraints in order to assure rigorous least squares solutions to the constrained problem.  
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Equality constraints can be applied when all or a portion of the pure-component spectrum and/or 
concentrations are known. They are also applied to compensate for a variable amount of offset 
signal present in our CCD detector output. In addition, if some components are known to be 
absent from a region of the image, an equality constraint with zero concentration can be applied 
to those pixels for components that are known to be absent. Our software possesses a great deal 
of flexibility when applying constraints to the alternating least squares algorithm. This allows us 
to use all of the spectral and spatial information known about a data cube and thus minimizes the 
rotational ambiguity converging toward a realistic solution. 
 
Another improvement to the MCR algorithms that was developed in the course of related 
research in our group at Sandia National Laboratories involves weighting the data to 
accommodate the fact the noise in the fluorescence signal is dominated by counting or Poisson 
statistics. Poisson distributed noise has the characteristic that the variance of the noise is 
proportional to the signal. Optimal weighting of the data was implemented to make the noise 
distribution of the weighted data more nearly uniform. The optimal weighting is obtained by pre-
multiplying the spectral data matrix by the inverse square root of the mean image and post-
multiplying the data matrix by the inverse square root of the mean spectrum. MCR is applied 
directly to the weighted data. The resulting pure-component spectra and the component 
concentrations are then scaled by the corresponding inverses of the weighting matrices to obtain 
the results in the units of the original data. 
 
Relating Hyperspectral Image Data to That of the Commercial Axon Scanner 
After analysis of the hyperspectral microarray data with the MCR algorithms, the results can be 
quantitatively compared with the results from the image from the same microarray region 
scanned with the commercial Axon scanner. This comparison can be made since we know the 
optical filters used in the Axon scanner for both the Cy3 and Cy5 channels. After the MCR 
analysis of the hyperspectral microarray scanner spectra, we have the pure-component emission 
spectra for each emitting source. We can simulate Axon signals from the hyperspectral scanner 
data by digitally integrating the band pass of the optical filter with the concentration-weighted 
MCR generated pure-component emission spectrum. We can then separately generate the signals 
for each emitting source at each pixel from the hyperspectral scanner that correspond to the red 
and green signals that would have been measured if the optical filters had been present in the 
hyperspectral scanner. We sum these signals and force the sum to be equal to the corresponding 
Axon signal obtained using that filter. With this procedure, we can determine the portion of each 
emitting source that contributes to the two signals generated by the Axon scanner. We can also 
compare the fraction of fluorescent label that is present in each of the two signals from the Axon 
scanner. 
 

Hyperspectral scanner results and discussion 

Hyperspectral Scanner Identifies and Corrects for Contaminant Emissions  

A freshly opened preprinted yeast microarray slide from Corning was scanned with the Axon 
4000B scanner and processed with the Genepix software in a typical fashion (see Figure 1). This  
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slide should not contain any emission from the DNA spots since it was not yet hybridized to the 
DNA with the fluorescent labels. However, it is clear from Figure 1 that the emission is greatest 
in the location of the printed spots. The quantitative ratio image indicates that this spot-localized 
emission is almost exclusively in the Cy3 (green) channel of the scanner. Similar spot-localized 
emission in the green channel was found for yeast microarrays obtained from three other 
commercial suppliers of yeast arrays and from our in-house printed yeast microarrays. Figure 2A 
shows representative emission spectra from the same slide scanned with the hyperspectral 
scanner using 532-nm laser excitation in the area of the inset in Figure 1. Figure 2B shows the 
pure-component emission spectra resulting from the application of our MCR analysis to the 
spectra in Fig. 2A. These MCR results were obtained using random positive numbers as starting 
points for the two pure-components identified as present by a PCA analysis of the spectra in Fig. 
2A. Nonnegativity constraints were applied to the concentrations and pure-component spectra. 
The only equality constraint applied in this case was for the spectral offset present in the detector 
signal. Note that MCR generates only relative pure-component emission intensities and the pure 
emission spectra in Fig. 2B have been normalized to unit length. Comparison with published Cy3 
and Cy5 spectra indicate that the emission spectra are not representative of either Cy3 or Cy5 
emission. 
 
 

Figure 1. Red/Green ratio image of the recently opened, unlabeled 
Corning yeast microarray taken from the Axon microarray scanner. 
The expanded region of the slide corresponds to the area scanned 
with the hyperspectral scanner. 
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Figure 3 shows the MCR generated concentration maps for both emitting species. The 
concentration maps make it clear that the source of one of the emitting species (the solid-line 
spectrum in Fig. 2B) is the glass since it is relatively uniform everywhere on the slide and its 
spectrum is similar to that of a clean glass slide monitored with our scanner. The other emitting 
component (the dashed-line spectrum in Fig. 2B) is the result of a spot localized contaminant that 
is introduced during the printing process. As we have found in other studies, this contaminant 
emission is a wide spread problem and only partially removed by standard hybridization and 
washing procedures.7 The amount removed during hybridization and washing was found to be 
quite variable and unpredictable. Since most spots contain more contaminant emission than glass 
emission significant errors in the standard background correction will be present with current 
commercial scanners and software. These errors in background correction will result in 
significant quantitative errors in calculated Cy5/Cy3 ratios, especially when the measured Cy3 
spot intensity is low to moderate.  
 

Figure 2. A. Emission spectra obtained from the expanded region of Figure 1 
using the hyperspectral scanner and 532-nm laser excitation. B. MCR pure-
component emission spectra of the glass and the contaminant extracted from 
the spectra in A. 
 
 



 16

A yeast microarray from Corning was then hybridized with Cy3 and Cy5 labeled cDNA as 
described in Ref. 7. This slide was scanned by the Axon scanner and a portion of the slide was 
also scanned by the hyperspectral scanner with the 532-nm laser. Note that this laser 
simultaneously excites the glass, contaminant, Cy3, and Cy5 emission sources. because the Cy5 
absorption is relatively low at 532 nm, its emission intensity is approximately a factor of 6 less 
than when excited by the 633-nm laser. Detailed results will be the subject of a future 
publication.[21] This publication will focus on the spectral components that would be 
confounded in the “green” channel of a commercial scanner. Figure 4 shows the spectra obtained 
from this microarray slide. PCA analysis of these spectra indicated that five pure spectral 
components were present. MCR analysis was performed on the spectra. However, in this case, 
the complexity of the spectra prevented the use of random numbers as starting points for the pure 
spectra in the MCR analysis. Instead, the glass and contaminant pure-component emission 
spectra were used as starting points along with Gaussian peaks generated to serve as close 
approximations to the Cy3 and Cy5 spectra (approximate width and wavelength positions of the 
dye emissions as determined from the literature). In addition, equality constraints were applied to 
portions of the pure emission spectra of Cy3 and Cy5 since spectral mixing of these dye 
emissions with the glass and contaminant emissions tended to occur at the extremes of the 
spectral range during the MCR analysis of these data. Therefore, the short wavelength portion of 
the Cy3 emission and the long wavelength portion of the Cy5 emission spectra were constrained 
to be zero consistent with the known spectra of these fluorescent labels. In addition, equality 
constraints were applied using a constant intensity spectrum normalized to unit length in order to 
fit the variable offset intensity present in the CCD output. Using these constraints along with 
non-negativity constraints for the emission spectra and their concentrations, excellent separation 
of the two dyes, glass, and contaminant emissions were obtained with the MCR analysis. Figure 

Figure 3. Relative concentration maps of the glass and contaminant 
emission species obtained by applying MCR to the analysis of the 
spectra in Figure 2A. 
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5 shows the resulting glass, contaminant, and Cy3 pure-component emission spectra from the 
MCR analysis of the spectra obtained from this microarray.  
 

Figure 5 also shows the green channel intensity map from the Axon scanner and relative 
concentration maps for the glass, contaminant, and Cy3 emission sources from the MCR analysis 
of the hyperspectral scans from the same region of the microarray. The total relative intensities 
for the MCR concentration maps were appropriately scaled as discussed in Section 3 so that the 
sum of the emission intensities in Fig. 5 corresponds to the total emission intensity for the Axon 
scan. In this manner, the total intensities for the glass, contaminant, and Cy3 measured by the 
hyperspectral scanner correspond to the total intensity measured in the Axon Cy3 channel. It is 
clear from Figure 5 that the glass emission is quite uniform, but the spot-localized contaminant is 
more intense than the Cy3 emission in most spots. The presence of this contaminant cannot be 
removed from the Axon images with the standard background correction methods since the 
contamination is spot localized. Thus, the error in the Axon (or any commercial microarray 
scanner) ratio images will be quite large for most spots in this slide. However, the ratios 
measured from the MCR analyzed hyperspectral scanner images will not have this error since the 
emission at each pixel is separately determined for all components. Therefore, neither the Cy3 
nor Cy5 concentration maps obtained from the hyperspectral scanner are confounded by the 
presence of the glass or the contaminant emission. 

Figure 4. Spectra obtained from the 
microarray slide with Cy3, Cy5, glass, and 
contaminant emissions using the 
hyperspectral scanner. 
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Figure 5. A. Pure-emission spectra of Cy3, glass, and contaminant 
obtained from MCR analysis of the hyperspectral scanner data 
presented in Figure 4. B. R/G ratio from the Axon scanner and the MCR 
generated concentration maps of the same area of the slide extracted 
from the hyperspectral scanner spectra. 
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If we pass the Cy3 and Cy5 concentration maps as TIFF files into the GenePix software, we can 
compare the Axon generated ratio images with the correct Cy5/Cy3 ratios obtained from the 
hyperspectral scanner using the same software to find and quantify the spot intensities for both 
dyes. The Axon generated ratio results would indicate a preponderance of green spots (Cy3 
intensity > Cy5 intensity) whereas the ratio image based on concentration maps obtained from 
the hyperspectral scanner indicates that most of the spots have a higher Cy5 intensity than Cy3 
intensity to yield a significant number of spots that are primarily red. From these data, a 
quantitative measure of the error in the Cy5/Cy3 ratio for this slide measured on the Axon 
scanner can be determined since the hyperspectral scanner yields ratios without the interference 
of the glass or the contaminant. As presented in Ref. 7, the calculated errors in the Axon-
determined ratios indicate that approximately 75% of the spots are in error by a factor of 2 or 
more, 50% of the spots are in error by of factor of 3 or more, and 25% of the spots are in error by 
a factor of 4.5 or more. A boxplot illustrating these errors in the Cy5/Cy3 ratio is shown in 
Figure 6. The greatest errors are for the spots with low amounts of Cy3. Spots with high 
intensities in the Cy3 channel will be much less affected by the presence of the contaminant 
emission, and the ratios of these spots will have relatively low errors. Since this slide has low 
Cy3 emission intensities for most of the spots, the size of the errors obtained when using 
commercial scanners is relatively large. In addition, errors in the normalization of the “green” 
and “red” channel data on the commercial scanners will be in error if contaminating fluorescence 
is present in the microarray. We estimated that the error due to incorrect normalization for the 
above slide amounted to an additional factor of 2.2 based on the data from the commercial 
scanner. MCR analyzed data from the hyperspectral scanner are immune to these additional 
normalization errors. 
 
 
In addition to providing higher accuracy for the Cy5/Cy3 spot ratios, the hyperspectral scanner is 
very useful in determining the source of artifacts and problems with a given microarray slide. For 
example, it is reported in the literature[22] that dye separation is apparent in spots on some 
slides. The apparent dye separation is observed as spots with red rings around a green center. It is 
difficult to understand the driving force for this apparent dye separation. We also observe 
occasional spots with red rings around a green center when our slide is scanned with the Axon 
scanner. However, with the capability of the multivariate curve resolution of hyperspectral data 
to quantify the relative concentration of each emission source at each pixel, we can determine 
that the presence of spots with red rings around a green center is not indicative of dye separation. 
For example, in a spot with the greatest variation of red/green ratios across the spot, we find  
that the Cy5 concentration for the spot is relatively high, the Cy3 concentration is low, but  
the contaminant concentration is high. (Figure 7)  The Cy5 and Cy3 are spatially 
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coincident in the spot, but the contaminant has a smaller diameter. Therefore, in our microarray 
slide, rather than dye separation, the appearance of a red ring around a green center is due to the 
fact that the contaminant is significantly more intense than the Cy3 and its size is smaller than 
that of the labeled DNA spot.  
 
Another anomaly often described in the literature is the presence of negative spots or “black 
holes.”[22, 23] In this case, the background around the spot appears higher than the emission 
under the spot. Since negative spot intensities are clearly not realistic, numerous papers have 
presented a variety of background correction methods such as using backgrounds obtained from 
portions of the slide far from the spots where the background intensity is low or using as 
background signal the intensity of control spots printed with DNA from another organism that is 
not expected to hybridize with the target cDNA to eliminate the presence of these negative spots. 
Although these alternative background correction methods minimize the presence of negative 
spots, they are subject to uncertainty since the background assumptions are more speculative and 
the source of the anomalous background can only be guessed. With the multivariate curve 
resolution of hyperspectral data, no separate background correction is necessary since the 
identity and relative concentration of each emitting source is determined at each pixel. Therefore, 
no assumptions about the spatial distribution of the background emission are required, and no 
subtractions of backgrounds away from the spots are required. Therefore, multivariate analysis of 
hyperspectral data can help researchers understand common microarray anomalies, and more 
details on the analysis of these anomalies will be presented in a future paper.[21] 

Figure 6. Boxplot illustrating error 
factor in Cy5/Cy3 ratio due to presence 
of green contaminant. 



 21

  
Finally, the higher throughput capabilities possible with the hyperspectral scanner have been 
tested using two closely overlapping dyes (Cy3 and Alexa 532) printed on a glass slide at various 
concentrations of pure and mixed dyes. The MCR analysis of the spectra obtained from this slide 
demonstrate the ability of the scanner to separate and quantify these two dyes even though their 
emission maxima are separated by only 12 nm. Figure 8 shows the separated concentration maps 
of the two dyes and the pure-emission spectra extracted for the glass, Cy3, and Alexa 532. These 
results clearly demonstrate the potential for higher throughput capabilities with gene expression 
microarrays with multiple overlapping dyes. Experiments are currently underway to 
demonstration of the ability of the hyperspectral scanner to dramatically increase microarray 
throughput in an actual microarray experiment with multiple overlapping dyes incorporated into 
the hybridized cDNA. 
 

Hyperspectral scanner summary 

We have demonstrated the power of our newly developed hyperspectral microarray scanner 
coupled with multivariate curve resolution to yield improved accuracy, better background 
correction, and a more complete understanding of microarray data. From our experiments on 
calibration slides with Cy3, we have been able to determine that our scanner has greater  

Figure 7. Illustration of apparent dye separation.  
 



 22

 
 
sensitivity than the commercial Axon scanner.[16]  Our scanner also has a higher dynamic range 
than the commercial scanners since the spectrum is widely dispersed over many detectors with 
16 bit A-to-D converters. The multiplex advantage of the MCR analysis allows our scanner to 
make use of the entire measured emission spectrum whereas the commercial scanners are limited 
to the narrower wavelength range of photons passing the optical filter. The potential for the new 
scanner to improve the throughput of each microarray slide has been demonstrated by measuring 
the ability of the scanner to quantify highly overlapping dye emissions. 
 
Currently we have been only scanning portions of the microarray slides with the hyperspectral 
scanners. The multiple gigabyte size of the full slide images has been a hindrance to analysis of 
these large files. However, data compression methods in both the spectral and spatial dimensions 
along with recent advances and improvements in the efficiency of the MCR algorithms make 
possible the rapid analysis of the full slide hyperspectral images on standard PCs. In addition, the 
fact that separate background corrections are not necessary with the hyperspectral scanner means 
that high spatial resolution of the current commercial scanners is not necessary. We have also 
shown that lower spatial resolution images can yield comparable quantitative results relative to 
the high spatial resolution images (i.e., 10 µm vs. 30 µm spatial resolution) that are generally 
collected by commercial scanners. Since comparable results have been demonstrated with lower 
resolution scans, the rate of data collection can be increased, the size of the files greatly 
decreased, and the speed of the MCR analysis further improved. 
 
The combination of microarray scanning with a very sensitive, high-throughput hyperspectral 
imaging system and the accuracy and understanding of the data made possible with the MCR 
data analysis makes the scanner an important new tool for improving microarray technology. In 
addition, the imaging system is not restricted to scanning microarrays. For example, the 
hyperspectral imaging system might be able to quantitate GFP fluorescence in the presence of 
overlapping non-specific fluorescence from cells and growth media. The hyperspectral scanner 
makes possible the use of many more variants of GFP than possible with current confocal 
imaging systems. Our new hyperspectral imaging system and multivariate curve resolution can 
also monitor multiple fluorophores in stained or labeled tissue sections. We have also completed 
a design for a new prism-based imaging spectrometer that will improve optical throughput of the 
system by a theoretical factor of three and will decrease image curvature to less than a single 
pixel. A new backside-illuminated detector has been obtained that will increase the sensitivity by 
a factor of two, has twice the number of pixels, and 10 times the read speed of our current CCD 
detector. These improvements that are in progress will greatly improve the speed, sensitivity, and 
image quality of the current microarray scanner. In addition, new funding has provided us with 
the components and labor to add a third dimension to our hyperspectral scanner. Therefore, we 
will soon have the capability of 3D hyperspectral imaging at the diffraction limit. Thus, the 
future prospects for our new imaging system are bright. 
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Section 2. Designed experiments reduce errors 
 
The results of the designed replicate microarray experiments demonstrate that Operators 1 and 3 
exhibited good short-term repeatability while Operator 2 exhibited short-term repeatability that 
was dependent on the block examined. Further examination of Operator 2 analyses revealed that 
for one set of replicates the starting rows of four of the twelve blocks in one case and two of the 
twelve blocks in another case were incorrectly identified due to very weak spots present in the 
first rows of these blocks. The result was an analysis that was comparing different genes between 
replicates for the blocks with the misidentified rows. Therefore, a simple training procedure was 
adequate to correct this problem that might not have been uncovered without the replicate 
analyses. The analysis of the short-term operator-to-operator variability was found to be quite 
good if the blocks from the misidentified rows were eliminated from the comparison for 

Figure 8. A. Composite image created from MCR-generated concentration maps 
of Cy3 and Alexa 532 fluorophores determined from MCR analysis of 
hyperspectral data collected from slide of spots printed with variable 
concentrations of pure dyes and 50/50 dye mixtures.  B. Pure-emission spectra 
of Cy3, Alexa 532, and glass based on MCR analysis of hyperspectral scanner 
data from the slide presented in A.
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Operator 2. Similar high repeatability was also observed for the month long separation of the 
replicate scans. These results would indicate that the operator variability over time is small and 
that the scanner is both reproducible and very stable. 
 
When the slide-to-slide variation was examined, we found that significant repeatability problems 
existed. Figure 9 demonstrates an example scatter plot for Cy3 for two replicate arrays measured 
by the same operator over a short time period. In Figure 9, the intensity levels for all spots in the 
array are shown. The results demonstrate that for a few genes, the measured expression levels 
vary by more than two orders of magnitude for these replicate hybridizations that started with the 
same mRNA samples. In order to understand the source of the repeatability problem, the data 
were analyzed by block. These results are shown in Figure 10 for the same slide represented in 
Figure 9. It is now observed that, in general, the data in the individual blocks are highly 
correlated but that the slopes vary by block and tend to decease systematically from the top left 
to the lower right-hand side of the array. This observation would indicate some lack of 
homogeneity in the hybridization that is most likely caused by lack of adequate flow of the 
solution over the array during the hybridization process. 
 

Figure 9. Slide to slide variation for two slides in statistical study of 
sources of variation in microarray experiments. 
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In order to test the hypothesis that adequate mixing during hybridization was the source of the 
repeatability problem, a new set of designed experiments were performed after changing the 
hybridization process. Instead of using cover slips which require capillary flow for mixing of the 
hybridization solution, we used cover slips with lifters to facilitate better fluid flow. The use of 
the cover slips with lifters does require more hybridization solution to be used, but the mixing 
should be more complete. In addition, the microarrays were place on a mechanical rocker during 
the temperature-controlled overnight hybridization to further promote mixing of the 
hybridization solution. A representative plot of the results from this improved experiment is 
shown in Figure 11 for slide-to-slide variability. As observed in Figure 11, the between slide 
variability has been dramatically reduced with all but a small number of spots being reproduced 
to with a factor of two or less. Thus, the new hybridization procedure has successfully improved 
the slide-to-slide repeatability. Because of the significantly decreased variability, the second set 
of designed experiments was able to identify other sources of variability that were not apparent 

Figure 10. Slide to slide variation for two slides in statistical study of 
sources of variation in microarray experiments. 
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in the first experiment. The new experiments identified variability due to the printing process of 
the microarrays. Thus, we have initiated a process of continuous improvement for the microarray 
experiments. 
 
 

Section 3. Informatics for microarrays 
 

Informatics issues and introduction 
 
Microarray experiments and their analyses seek to detect effects in gene expression under 
different treatments or natural conditions with the goal of clarifying the cellular mechanisms 
involved in the cells’ differential responses. Uncertainty is the rule rather than the exception in 

Figure 11. Slide to slide variation is much improved after improvements 
to major sources of variation in the microarray manufacturing process.  
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these analyses. First, the underlying systems (cells and/or tissues) are incredibly complex 
whether viewed from the dynamic process perspective, or their physical realizations in space and  
 
time. Second, there is abundant variability between cells experiencing exactly the same 
conditions as a result of genetic polymorphisms, but also because of the stochastic nature of 
these chemical systems. Third, the collection and initial preservation of these cells is not a 
precisely controlled process. For example, when a surgeon removes a cancer the tissue may not 
be frozen or otherwise processed for minutes to hours, meanwhile the cells continue to respond 
to these unnatural conditions. Further, the tissues, or partially processed extracts, are often sent to 
another laboratory several hours or even days away from the original collection site, all of which 
offers opportunities for chemical changes. Fourth, these measurements are not easy to make; 
they involve many processing steps with a wide variety of chemicals, and at every step 
variability arises. The processing is often, necessarily, divided across several days and among 
several technicians, with inherently different skills and training. Further, the chemicals are never 
perfectly the same; they are created in batches and age, both of which affect the laboratory yields 
and the quality of the processing. Finally, the arrays themselves are technological objects subject 
to all sorts of variability in their creation, storage, and final use. In effect, the simple 
measurement of mRNA concentrations that we would like to make is confounded by huge 
uncertainties. To be able to make good measurements it is essential that all of the mentioned 
steps be subject to careful statistical process control monitoring and systematic improvement, 
and further, that the actual experiments be designed to avoid, randomize, or otherwise balance 
the confounding effects for the most important experimental measurements. These are best 
practices more often found in their breach than in actual laboratory experience, unfortunately.  
 
By the time the data are ready for analysis they are typically presented in a numeric table 
recording a measurement for each gene across several microarrays. For example one might be 
analyzing 400 arrays each with 20,000 gene measurements, which would be presented in a table 
with 20,000 rows and 400 columns. Often the table will have missing values resulting from 
scratched arrays, poor hybridizations, or scanner miss-alignments, to name just a few from 
among the host of possible problems. The analysis methods should be able to gracefully deal 
with these incomplete datasets, while the analyst should approach these data with great 
skepticism and humility considering how complicated the cellular processes are, and how error 
prone our microarray technology is. Despite all of these issues, statisticians and informaticians, 
unlike mathematicians, are expected to say something about the structure and meaning of these 
data. Because, as Thompson has said, “[statisticians] should be concerned with a reality beyond 
data-free formalism. That is why statistics is not simply a subset of mathematics.”[24]. Here, we 
attempt to follow Thompson in discussing implications, as well as our approach to analyzing 
these experiments, including considerable detail about the algorithms, and the way the data are 
handled. 
 
In general, we begin by preprocessing the measurements with thresholding, rescaling, and 
various other transforms. We then compare the genes by computing pairwise similarities with 
several techniques. These similarities are used to cluster (or assign spatial coordinates to) the 
genes in ways that bring similar genes closer together. These clusters are then visualized with 
VxInsight.[25, 26]The clusters are then tested with statistical methods to identify genes and 
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groups of genes that are differentially expressed in the identified clusters, or genes otherwise 
identified with respect to experimental questions and hypotheses. The expression values for the 
identified genes are plotted, and tested for stability. Those genes which seem particularly 
diagnostic or differentiating are studied in detail by reading the available information in online 
databases and in the original literature. To help with this expensive and knowledge intensive 
literature review we have developed the text analysis tool, Genome Literature Exploration 
Environment (GLEE), which automatically gathers together, and restructures available textual 
information in ways that match our analysis protocol thereby enabling a smooth cognitive flow 
during the analysis. Each of these analysis steps will be presented in an order approximately 
following the analysis order we use in practice. 
 

An overview of the basic clustering 
 
Organizing large groups of data into clusters is a standard and powerful practice in exploratory 
data analysis. The first step after the initial data transformations involves the pairwise 
comparisons of the data elements to determine their relative similarity. This comparison, 
typically, results in a single similarity number. For example, when comparing the expressions of 
N genes across multiple experimental conditions one might compute N(N-1)/2 correlation 
coefficients as the similarity measure between each possible pair of genes. After the data pairs 
have been assigned similarities, various grouping algorithms can be used, for example 
hierarchical clustering (which produces dendrograms) or the force-directed clustering algorithms 
developed at Sandia National Laboratories. However, each of these approaches expects to find a 
single similarity value (the result of applying a single similarity criterion) for the data pairs. In 
the next section we show one way to prepare the raw data for similarity processing, then turn to 
computing the similarities, and consider the population structures of the pairwise similarities in 
typical microarray data. 

Data transformations and similarity computations. 
 
As discussed earlier microarray data typically have a large number of missing data, or values 
otherwise deemed to be non-present. We typically drop genes with too many missing values, 
where that threshold is under the control of the analyst. Then the raw values are scaled to help 
with the processing. 
 
The distribution of microarray measurement values typically have extremely long tails, that is, 
there are a few genes with very large expressions, while most of the others are quite small. 
Figure 12 shows the distribution of raw counts from an Affymetrix U95AV2 chip, which 
exhibits the typical distribution, similar long-tailed distributions are found for other array 
technologies. The extreme differences between the larger values and the more typical values 
cause problems with most analysis methods. Tukey suggested a number of transforms to make 
data from such distributions less extreme and more like the normal Gaussian distribution[27]. In 
particular, taking logarithms of the raw data is a common practice to make microarray data more 
symmetric and to shorten the extreme tail, see Figure 13.  
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However, we frequently use another transform to compress the extreme values, which is due to 
Savage[28]. This rank order based score is an increasing function of expression level. Howerver, 
the smaller values are compressed to be very nearly the same, which is particularly useful with 
array data where a very large component of these smaller values is purely due to noise. If the 
expression levels are rank ordered from smallest to largest, )()2()1( ... nXXX ≤≤≤ , then the 
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Figure 14 shows how this score compresses the extreme tail, and Figure 15 compares the log 
transformed values with the SS values for an intermediate range of raw counts. Figure 16 show 
the distribution of savage scores for 8943 genes. About 60% of the savage scores are below 1, 
see the savage score percentiles in Figure 17. 
 
The use of this scoring has two advantages over correlations using raw counts. First, because it is 
based on rank ordering, data from arrays processed with very different scalings can still be 
compared. Second, because the noisiest fraction of the measurements is aggressively forced 
toward zero, the effect of the noise is suppressed without completely ignoring the information (it 
has been taken into account during the sorting phase) in the genes with low expressions. Large 
differences in rank order will still be strong enough to be detected.  
 
The normalization of array data is controversial. Some form of centering and variance 
normalization might be a good approach. However, it has been argued that for many experiments 
there is no intrinsic reason to expect the underlying mRNA concentrations to have the same 
mean (or median) values and variance adjustment is even more suspect1. Nevertheless, the 
analyst has the option to do such normalizations, if desired. In general, we avoid this issue by 
working with order statistics and savage scores. After adjusting the numbers to achieve the 
desired normalizations and distribution adjustments, the similarities must be computed as 
discussed in the following section. 
 

                                                 
1 Personal correspondences with Stuart Kim. 
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Figure 12. The distribution of expression levels in raw counts from a typical Affymetrix U94A microarray. 
Note the few extreme values greater than 50,000 counts, while most measurements are less than 5,000. 

 
 
Figure 13. The distribution of expression levels from the previous figure, but now after log transformations. 
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Figure  14. The expression levels from Figure 12 after compressing with savage scoring. 

 

 
Figure 15. Notice how savage scoring is much more aggressive than log transformations in compresses the 
extreme values. 
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Figure 16. A histogram of savage score values for 8,943 genes. Note that, in contrast to log transformed 
expression levels, savage scores are bound in a predictable way. 

 
 

 
Figure 17. A percentile plot for the savage scores in the previous figure. Note that about 60% of the genes are 
below 1. 
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The data as an abstract graph 

 
The relationship between the data elements and their similarity values can be visualized as an 
abstract, weighted graph ),,( ,, jijii WEVG  consisting of a set of vertices, V, (the genes) and the set 
of edges, E, with weights (the similarities between the genes), as shown in Figure 18. This graph 
is only topologically defined; the vertices have not been assigned spatial locations. Spatial 
coordinates are computed from the weighted graph using the iterative clustering algorithm 
VxOrd,[26]which places vertices into clusters on a two dimensional plane such that the sum of 
two opposing forces is minimized. One of these forces is repulsive and pushes pairs of vertices 
away from each other as a function of the density of vertices in the local area. The other force 
pulls pairs of similar vertices together based on their degree of similarity. The clustering 
algorithm stops when these forces are in equilibrium. The clusters are then visualized with 
VxInsight[25, 26], which represents the clusters as a mountainous terrain built above the 
clustered vertices, which have been collocated to the extent that they are similar to other vertices 
in the local neighborhood. The height of each mountain is proportional to the number of vertices 
under it, and the separation between mountains is an indication of the degree of dissimilarity 
between the groups of vertices under one mountain with respect to the nodes under the other 
mountains. The details of this process will be discussed below, but one should note that the 
process has not specified any particular method for computing similarities, and, in fact, the entire 
process can be used with any real-valued similarity measure. 
 

 
Figure 18. Data elements are nodes and similarities are arc values, which are clustered and assigned X,Y 
coordinates and represented as a mountain range by VxInsight. 
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Choosing a similarity measure 

 
One obvious candidate for measuring similarities is the simple correlation coefficient, R, due to 
Pearson[29], 
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Pearson’s R is just a dot product of the two n-dimensional vectors which have been mean 
centered and normalized by their lengths, so one can think of R as a measure of the extent to 
which the two vectors point in the same direction in the n-dimensional space. Of course the 
vectors might lie along the same line, but point in opposite directions, which is the meaning of 

.1−=xyR  If the vectors are completely orthogonal the correlation will be zero.  
 
In fact, Pearson’s correlation is the measure of similarity that we, and the rest of the microarray 
community, use most often. It is, however, not the only possibility, and in fact has some features 
that do not recommend it under certain situations. For instance, Pearson’s correlation is known to 
be sensitive to outliers, especially when n is small. Technically, R , has a break-down point of 
1/N, meaning that as few as one extreme outlier in the N points can make the statistic completely 
different from the true measure of correlation for two random, but correlated variables[30]. In 
practice, we have not found this to be a real problem with sets of arrays running into the 
hundreds. However, early in the development of microarray technology many data sets were 
published with order ten arrays. In these cases it was deemed valuable to apply more 
computationally expensive, but more robust measures of correlation. Details about robust 
measures of correlation, including the Percentage-Bend Correlation Coefficient can be found 
in[31].  
 
We have also found occasion to use very different similarity measures. For example, we clustered 
genes based on the textual similarity of their annotations in the online Mendelian Inheritance In 
Man (OMIM) database [32, http://www.ncbi.nlm.nih.gov/omim/]. In this case, the text (see Figure 
19 for a typical gene annotation) was processed with the RetrievalWare search and retrieval 
package from Convera. RetrievalWare computes the similarity between two text documents with a 
proprietary algorithm, based on word co-occurrences, and word importance by the location of the 
word’s occurrence in the sentence. For each gene annotation the strongest 19 other annotations 
were accumulated to create a similarity file and then processed as previously shown in Figure 18. 
The gene clusters based on the textual similarities of their annotations in OMIM is shown in Figure 
20, which is presented solely as an example of the use of alternate similarity measures within the 
overall process. With our present text analysis tools, the clusters do not correlate with clusters 
based on microarray measured gene expressions from 254 leukemia patients as shown in Figure 
21. The more typical processing for microarrays is discussed in the following section. 
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Figure 19. Typical text annotating the individual genes in the OMIM database. 
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Figure 20. Cluster of genes in the OMIM database using similarities computed from the annotation text itself. 
Four quadrants have been colored here for comparison with the clusters in Figure 21, which are based on 
actual gene expressions. 
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Figure 21. In this figure the genes have been clustered by expression levels in 254 leukemia patients, and 
colored as in the previous Figure. Little similarity between the two figures can be discerned, even with finer 
scale investigations than these two. 

 

Similarity algorithms 

 
While Pearson’s correlation has a breakdown point of 1/N (a single outlier can distort the 
statistic from one extreme to the other[30]), it is easy to compute and has been well accepted in 
the microarray community. Because savage scored expression values are bounded, the influence 
of outliers is less important. As a result the correlation coefficient is usually the basis of our 
similarity computations. When too few arrays are available to have confidence in R, the 
percentage-bend coefficient[31]can be used instead.  
 
It is common to cluster directly with these coefficients. However, doing so ignores much of the 
available information because R is such a nonlinear function. For example, there is a slight 
change in significance when comparing two pairs of genes that have R=0.5 and R=0.55, 
respectively, but the relative significance between R=0.90 and R=0.95 can be quite large. 
Consequently, it is better to transform these correlations to a measure of their relative 
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significance, which can be done by converting to the t-statistic for the observed correlation, R, 
between the pairs of values[29]: 
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Both R and t have computational issues that should be addressed. In particular, R is undefined 
when the variance of either X or Y vanishes, hence a minimum, acceptable variance must be 
determined. We typically require that  
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otherwise, no correlation is computed for the pair of expression vectors. A related issue occurs 
with t when R approaches 0.1±  too closely; the t-statistic becomes arbitrarily large. Because 
clustering will be comparing similarities, the strength of an extreme outlier will distort the 
clustering. Hence t should be clipped to avoid such extremes.2  
 
Missing data continue to present concerns in computing R. Certainly, if too many values are 
missing, any computed similarity would be suspect. Recourse to the analyst’s experience and 
judgment is the best way to choose how many values can be missing before the comparison is 
not attempted.3 Computing all of these correlations produces a huge file of similarity 
comparisons. For example, the computation for an experiment[33] around C. elegans, which has 
about 20,000 genes, required the computation of about 8102x  correlations. Using all of the 
correlations for clustering is neither necessary nor desirable. Most of the correlations will be 
modest and including them slows the clustering computation and introduces a great deal of 
resistance to the process that separates the mass of genes into clusters. For example, if some 
particular gene has strong correlations with a few tens of other genes, they should eventually be 
clustered together. However, if there are hundreds or thousands of correlations weakly linking 
that particular gene to others, the net sum of these weak correlations may overwhelm the few 
strong correlations.4  
 
If only a few of the correlations will be used for clustering, some method of choice is required. 
The analyst can use all correlations above some threshold, or just the strongest few correlations 
for each gene. We have found the latter approach to be sufficient.5 Interestingly, the distribution 
of the pairwise correlations offers some insight into the effect of the distribution rescaling 
discussed earlier. 
 
                                                 
2 We typically truncate values greater than 300, though even this value may be extreme. 
3 For large collections of arrays, requiring that at least 70 measurements be simultaneously non-missing for both 
expression vectors has been acceptable in our experience. 
4 It can be argued that these weak correlations will sum to zero so that, in expectation, the effect of the strong 
correlations will still control the clustering. However, the variance of that sum will grow with the number of weak 
correlations used, thereby potentially masking the stronger similarities for any particular case. 
5 We have found that using the twenty strongest correlations is often a good starting point. However, even fewer 
correlations may suffice, especially with the methods discussed below for finding the most central ordination from a 
distribution of stochastic clustering results. 
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Figures, 22, 23, and 24 show the distribution of correlations between 254 Affymetrix arrays from 
a Leukemia study at the University of New Mexico (publications in preparation, 11/2003). Here 
the expression correlation is between arrays, not between genes across arrays. 
 

 
Figure 22. A histogram of correlations between pairs of arrays from 254 leukemia patients. These 
correlations are before any within-array normalization, and appear quite strong. 
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Figure 23. The histogram of correlations after transforming raw counts by taking logarithms. Note the mean 
correlation has apparently decreased. 

 
Figure 24. The array to array correlations after savage scoring the raw counts within each array. Note the 
more symmetric distribution and the further decrease in variance. 

 
 
The arrays appear to be quite well correlated when the raw counts are used (see Figure. 22), but 
this correlation is illusory, the extremely high counts for a few genes are unduly influencing the 
correlations. If fact, there should be some apparent differences between two groups of arrays in 
this study, which contrasted patients with different treatment outcomes. If the arrays were, in fact 
perfectly correlated, it would be difficult to find differences in the gene expressions for these 
kinds of cancers, even though such differences are known, from other methods, to exist. 
 
The arrays appear to be less correlated after the counts have been log transformed (see Figure 
23). However, a heavy tail is apparent for the less correlated arrays. Finally, when the raw values 
are savage scored (see Figure 24) within each array, the array to array correlations are more 
symmetric. There is a slight increase in average correlation with respect to log transformed data, 
but the average correlation is less than is observed with the raw counts. Also note that the 
variance of these correlations decreases when savage scores are used. 
 
Figures 25, 26, and 27 show cross plots of the correlations when using raw counts, log2 
transformed counts, and savage scoring within each array. Correlations between transformed 
arrays (both log and savage scored) do not correlate particularly well with correlations computed 
using raw counts. This is believed to be the result of the strong influence of the few large raw 
measurements. On the other hand, there is good correlation between log transformation and 
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savage scoring, with a slope of nearly 1.0. However, the correlations based on logs are slightly 
less correlated than with savage scoring. 
 

 
Figure 25. A cross plot examining the effect of log transforming the raw counts. 

 
Figure 26. A cross plot examining the effect of savage scoring on the correlations. 
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Figure 27. A cross plot comparing the effect of log transformation with that of savage scoring. 

 
 
 
 
 
Figures 28, 29, and 30 show the distributions (with raw counts, log transformed counts, and 
savage scored counts) for these same gene correlation data; in this case the correlations are 
between genes and across arrays. These gene pairs were randomly drawn from the 8934 
possibilities; hence there is little reason to anticipate any actual correlation between the selected 
genes (though, of course, it is not impossible that some pairs might be correlated). With this 
random selection in mind, on would expect a distribution centered about zero, and the smaller 
the variance about zero the more certain one could be about the actual correlations being zero, as 
expected. In fact, savage scored arrays do have a slightly smaller variance around zero, further 
supporting the use of savage scoring over log transforms. Interestingly, however, little difference 
can be seen between the use of raw counts and the use of log transformed counts, perhaps 
because it is unlikely to randomly select those few genes with extremely large raw counts. 
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Figure 28. Correlations between randomly chosen pairs of genes using raw counts. 

 
 

 
Figure 29. Correlations between randomly chosen genes when log transforms are used. 
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Figure 30. Histogram of correlations between pairs of randomly chosen genes when savage scoring is used. 
Note the slightly smaller variance when savage scoring is used, compared to either raw or log transformed 
data. 

 
 
 
 
Figures 31, 32, and 33 show the cross plots for these gene correlations, which show little effect 
on R with respect to the use of either raw counts and log transformed counts, while the use of 
savage scores does narrow the range of observed correlation values. 
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Figure 31. The cross plot suggest little the effect between using raw counts vs. log transformed counts for 
correlations between randomly drawn pairs of genes. On average, no correlation is expected. 

 

 
Figure 32. Cross plot comparing the effect correlations between randomly selected genes when using raw 
counts and when using savage scored counts within arrays.  
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Figure 33. A cross plot showing the effect on correlations when using log transformed counts vs. the savage 
scored counts. 

 

Processing measurements to create similarity connections 
 
For a typical microarray experiment we cluster the gene using savage scored order statistics 
within each array after removing genes with too many missing values. Then pairs of genes are 
compared using Pearson’s R. Generally, we will use only the strongest twenty positive 
correlations for each gene. These similarities are transformed as discussed earlier to the 
corresponding t-statistic to correctly reflect the significance of the correlations between the pairs. 
That is, we emit a similarity file having twenty entries for each gene, and each of these entries 
will have the name of the two genes and the t-statistic from the associated Pearson’s correlation. 
This file serves two purposes. First, it is the input for the clustering algorithm, which will be 
described in the next section. Second, pairwise similarities can be visually examined, using the 
VxInsight connection list feature, to evaluate the quality of the clustering. 
 

Connection lists 

 
When a connection list is displayed in VxInsight on top of a visual cluster of the genes, pairs of 
related genes are shown with a line connecting them. This visualization is a quick way to 
evaluate how well the clustering algorithm performed. In particular, one would like to see a great 
density of connections between the genes in local clusters and fewer connections between genes 
in different clusters. Because we constrain the clusters to exist in two dimensions, it is generally 
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not possible to perfectly meet this criterion, and one should expect considerable cluster-to-cluster 
interconnection. Importantly, these inter-cluster connections reflect the larger scale structure of 
the clustering, as these are the similarities which tie various clusters together into related groups 
of subclusters. The strength of these groupings can be immediately visualized by the density of 
the similarity connections, see the VxInsight discussion. 
 

Strongly similar connection lists 

 
While the entire similarity file is used for clustering and can be visualized to evaluate the 
resulting cluster structures, one often would like to see only the strongest similarities to make 
sure that they are particularly localized within individual clusters. However, this concept of 
strong similarity is not well defined, and a range of acceptable criteria should be explored. The 
approach we use is, again, based on the analyst’s experience and intentions. 
 
The analyst specifies a particular correlation that is to be considered “strong,” say a true 
population correlation of 9.0>ρ . Certainly, all observed sample correlations, R, above this 
value will be written to the strong similarity file. However, by random chance a pair of genes 
with actual correlation 9.0>ρ  may have experimental measurement with a sample correlation 
that falls below this threshold. The analyst controls this risk not by lowering the definition of the 
acceptable true correlation required to specify strong correlation, but by specifying the risk that 
would be acceptable for missing a pair of strongly correlated genes given the random nature of 
making measurements. For example, the analyst may require 9.0>ρ , but would be willing to 
miss a pair at that level one time in twenty. Hence, because the sample correlation, R, can fall 
around ρ , the threshold for R will actually be less than the selected value, 0.9; how much less is 
specified by the acceptable chance of falsely rejecting a strong correlation (here the one chance 
in twenty). 
 
Computing the threshold requires an estimate for the distribution of the sample correlation 
around the true correlation, ρ . The transformation from R to t discussed earlier is only valid 
when 0=ρ , and hence is not suitable here. However, R. A. Fisher[34, 35] has shown that 

)]1ln()1[ln(5.0 RRZ R −−+×=  is distributed approximately normally with mean ρZ  and 

variance )3/(12 −= nZσ . Hence the following transformation may be used to compute the critical 
threshold matching the analyst’s specifications: 

ZR ZZZ σρ /)( −= . 
One must first find the normal deviate βZ , which matches the specified risk (one in twenty times, 
or 0.05, in this case); 05.0)( =< βZZP , or 64.1−=βZ .  

ρZ , and 2
Zσ  must be computed before solving for RZ : 

4722.1)]9.01ln()9.01[ln(5.0 =−−+×=ρZ , and  

)3/(12 −= nZσ  
)3−×+= nZZZRcritical βρ . 
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Then, finally the critical value, RcriticalZ , can be found by inverting Fisher’s transform, to give  
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All of the pairwise similarities exceeding this critical value can be saved in a file, which will be 
used later when displaying the strong similarity connections, as desired. The next step, following 
these preliminary calculations, is to use the similarities to cluster the genes. It should be noted, 
that this discussion has focused on clustering the genes using gene expressions across n  
microarrays. However, the same kinds of similarity calculations can be used when clustering 
together the microarrays, or the patients associated with those arrays. We generally compute both 
clusters, as they yield complementary information, and both offer visual clues about the 
clustering results. For example, Figure 34 shows a few of the 120,000 similarity links used to 
cluster the data; one can see that some similarities must be stretched in the course of laying out 
the entire graph. Figure 35 shows a close up of one of those clusters to show the much greater 
density of similarities within the clusters than between them. This is particularly apparent when 
strong similarities are used, see Figures 36 and 37. This use of connection lists displayed over a 
cluster of data is a very powerful visual tool, and is not restricted to just similarity connections. 
For instance [36] used this feature to simultaneously visualize gene expression data through the 
cell cycle with connections between genes whose gene products are known to interact. 
 

 
Figure 34. A few of the 120,000 links used to create the clusters. The marked region is shown in more detain 
in the next figure. 
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Figure 35. The links within the cluster indicated in the previous figure. Note the high density of links within 
clusters relative to between them. 
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Figure 36. Just the strongest links across the whole cluster. The next figure shows a closeup of the indicated 
region. 
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Figure 37. The strong links within the indicated region in the previous figure. Note the very high 
concentration of strong linkages within the cluster relative to those between clusters. 

 

Clustering with VxOrd 
 

The VxOrd clustering algorithm assigns two dimensional coordinates to vertices in a connected, 
weighted graph, where the edge weights are the non-negative similarities between the connected 
vertices.6 The algorithm places genes into clusters such that the sum of two opposing forces is 
minimized. One of these forces is repulsive and pushes pairs of genes away from each other as a 
function of the density of genes in the local area. The other force pulls pairs of similar genes 
together based on their degree of similarity. During each iteration of the algorithm, small 
adjustments to the assigned coordinates are made in the direction minimizing the force on the 
gene being moved. The details of this implementation are critical, and have been described in 
detail in a previous paper[26].These details are reproduced below, placing the clustering 
algorithm within the larger processing and analysis context. 
 
An abstract, edge-weighted graph, G = (V, E), is generated using a list of nodes and their 
similarities, where the vertices, V, correspond to the data objects, and the similarities correspond 

                                                 
6 For convenience here, the vertices are assumed to correspond to genes, but they could equally well be arrays or 
patients. 
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to the weighted edges, E. An extensive literature exists for graph drawing and layout 
algorithms[37-45]. The work of Fruchterman and Reingold [38] is particularly relevant to our 
approach.  
 
In developing and implementing our algorithm we were guided by four important principles: 

1. Vertices connected by an edge should be drawn near each other. 
2. Non-connected vertices should be forced away from each other. 
3. The results should be insensitive to random starting conditions. 
4. The complexity of computation should be reduced to a minimum. 

 
These principles are so important that we will address each of them in detail. 
 

Principles 1 and 2 

Fruchterman et al. compute a ‘force’ term for both attraction and repulsion. These terms are then 
used to generate new positions for the graph vertices. Our algorithm combines the attraction and 
repulsion terms into one potential energy equation. The first term, in brackets, is due to the 
attraction between connected vertices; the second term is a repulsion term. 
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K i (x,y)  = The energy of a vertex at a specific x, y location 

ni  = The number of edges connected to vertex i 
wi,j  = The edge weight between vertex i and the vertex connected   by edge j. 
l2 i,j  = The squared distance between vertex i and the vertex at the other end of edge j. 
D x,y  = A force term proportional to the density of vertices near x,y. 
 

In our ordinations, the energy equation is gradually minimized in three phases in an iterative 
fashion. The first phase reduces the free energy in the system by expanding vertices toward the 
general area where they will ultimately belong. The next phase is similar to the ‘quenching’ step 
that occurs in simulated annealing algorithms, the nodes take smaller and smaller random jumps 
to minimize their energy equations. The last phase slowly allows detailed local corrections while 
avoiding any large, global adjustments.  
 
All movements are random; each vertex is allowed to ‘jump’ from its current position to a new, 
random location. If the move reduces the potential energy for the vertex then the vertex is 
allowed to stay at the new location. Otherwise, the vertex remains where it was until the next 
iteration. Other, more complicated techniques, including gradient descent and methods with 
momentum terms, are theoretically appealing. However, the energy ‘surface’ for thousands of 
vertices is so chaotic (both spatially and temporally), that, in practice, we have found the simpler 
method performs better. Notice that for each vertex only its own energy is considered, a 
characteristic of a ‘greedy’ algorithm, which only indirectly leads to a global minimization for 
the entire system. However, the total energy of the system,  
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can still be used as a criterion for algorithm termination. 
 
The literature [37, 42, 43]discusses many other termination criteria, some of which do not 
explicitly follow the total energy. Eades[37], for example, suggests simply running a fixed 
number of iterations, in their case 100. We have found that 800 iterations work well for our more 
complex graphs. We typically deal with graphs having on the order of 10,000 vertices.  
 
Clearly, minimizing the potential energy should lead to ordinations that are consistent with our 
first two principles. The attraction term rewards movements that minimize the edge lengths 
between strongly weighted vertices. The second term, Dx,y, which is a force based on the local 
density of nearby vertices, is minimized when vertices move to less crowded areas. In order to 
reduce both terms, a vertex must be close to its connected vertices and at a distance from non-
connected vertices.  
 

Principle 3 

A stochastic ordination process can easily start in ways that prevent smooth transitions to correct 
answers. That is, the algorithm can get trapped in local minima, and is likely to be forced toward 
local minima early in the computation. The problem is that an initial configuration can result in 
some vertices that belong near each other being initially separated by a large barrier. Various 
stochastic techniques are used to avoid this problem. For instance, simulated annealing allows a 
probabilistic decision to take moves that will occasionally actually increase the energy associated 
with the node. This technique allows vertices to overcome the barriers associated with local 
minima in the effort to find lower energy states. Upon examination of our energy equation it 
becomes clear that ‘barrier jumping’ can be achieved by directly solving for the location that 
minimizes the energy for a single vertex, which can rapidly move a node through an energy 
barrier. We have successfully used this analytical approach for avoiding local minima early in 
our algorithm. Achieving a favorable configuration early in the process, independent of the 
starting configuration, is essential for efficient ordinations that are consistent with our third 
principle.  
 
We achieve this result by moving vertices in the direction specified by energy equation most of 
the time. However, to jump over energy barriers a small fraction of the vertices ignore the 
repulsion term and minimize the attraction term analytically. This is accomplished by computing 
a weighted centroid over all connected vertices. The vertex then ‘jumps’ to that computed 
centroid, regardless of any possible energy increase, as shown in Figure 38. 
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Figure 38. Barrier jumping by ignoring density term. 

 

 
Figure 39. Two random runs with and without barrier jumping. 
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Figure 40. These histograms compare the random ordinations shown in the previous figure, with and without 
barrier jumping. Note that local neighborhoods are severely distorted without barrier jumping. 

 
Barrier jumping is tied to the cooling schedule, and the frequency of barrier jumping linearly 
declines from 25% to 10% during the ‘quenching’ period and is not used at all during the 
simmer phase. The high frequency at the beginning is required for stability with respect to 
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random initial conditions. The poor initial placement or initial bad jumps that would 
otherwise irrevocably change the outcome of a purely random algorithm are greatly mitigated 
by the correcting nature of this process. Figure 39 shows images from two pair of random 
runs. Ordinations in the first row use barrier jumping, ordinations in the second row do not. 
We can see the excellent repeatability achieved by using the barrier jump technique. The 
second row shows that the 6000 vertices become hopelessly trapped in a web of local 
minima. The histograms in Figure 40 provide further support that barrier jumping improves 
the repeatability of the random iterative solver. The histograms measure the stability of the 
ordination algorithms by counting the number of identical ‘neighbors’ within the nearest 1% 
of the other genes The maps contain 6000 genes so for every gene, we measured how many 
of the 60 nearest genes remained the same between runs. 

  

Principle 4  

The brute force approach for computing Dx,y is certainly not consistent with our fourth principle. 
Because each vertex would have to check its position against all other vertices; this 
unsophisticated approach would take |V| comparisons for each determination of Dx,y. As every 
node must compute Dx,y when determining its energy at a specific location x,y, the algorithm 
would require total running time Θ(|V|2). 
 
For real world problems an Θ(|V|2) algorithm is prohibitively expensive. We have developed a 
grid-based method for computing Dx,y that allows each vertex to determine an approximate value 
for this term in constant time, Θ(1), thereby reducing the total running time to be a satisfactory 
Θ(|V|).  
 
The grid-variant algorithm discussed by Fruchterman8 uses a binning technique to consider only 
those vertices within a certain neighborhood. This is an approach that, with a uniform 
distribution of the vertices, will reduce the calculation to Θ(|V|). However, a graph will only have 
a uniform distribution if the number of edges is small. Highly connected graphs will have dense 
concentrations of vertices in small areas, and the run time is no longer linear with the number of 
vertices. To be effective for all graphs, our repulsion term utilizes a ‘non-specific’ density 
measure. Vertices are not repulsed by other specific vertices, but are repulsed by a general 
overcrowding. This minor modification to the repulsion criteria allows a dramatic reduction in 
computational complexity. 
 
This density field algorithm is implemented by having each node place an energy footprint onto a 
two dimensional (density field) array. The energy footprint may be any function in two-space. 
Our implementation uses a circle with radius r and a function that peaks at the center of the 
circle, while falling off quadratically with increasing distance from the center of the circle. The 
total density field is the sum of the contributions of each vertex in the region. Given the density 
field, a node can determine an approximate Dx,y  value using a constant time table lookup method. 
This method reduces the computation of the repulsion term from Θ(|V|2) to Θ(|V|), and is 
consistent with our fourth principle, an important result for using our algorithms with real 
applications. 
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Clustering parameters 

There are three important controls the analyst has over the VxOrd algorithm: 
 

1) The number of similarities used for the clustering. 
2) The degree to which the algorithm is free to ignore, or “cut” a few 

similarities between genes, which would otherwise be strongly pulled 
toward multiple clusters. 

3) The amount of effort that the algorithm is allowed to spend in trying to sort 
out the local structure of the clusters, once the global clustering has been 
computed. 

 
The first control concerns how many similarities are passed to the clustering algorithm. Every 
gene has some correlation with every other gene; however, most of these are not strong 
correlations and may only reflect random fluctuations. By using only the top few genes most 
similar to a particular gene as it is placed into a cluster we obtain two benefits: the algorithm runs 
much faster, and, as the number of similar genes is reduced, the average influence of the other, 
mostly uncorrelated genes diminishes. This change allows the formation of clusters even when 
the signals are quite weak. However, when too few genes are used in the process, the clusters 
break up into tiny random islands containing only two or three very similar genes, so selecting 
this parameter is an iterative process. One trades off confidence in the reliability of the cluster 
against refinement into sub-clusters that may suggest biologically important hypotheses. These 
clusters are only interpreted as suggestions, and require further laboratory and literature work 
before we assign them any biological importance. However, without accepting this trade off, it 
may be impossible to uncover any suggestive structure in the collected data.  
 
As an example of the impact of these parameters, consider Figures 41 through 43. Here we are 
clustering a set of 126 arrays, each with about 12,000 genes. First consider the effect of using too 
many similarities. Figure 41 shows the result when 100 similarities per array are used. In this 
case, there is a similarity connection from every array to all but the least similar 20% of the other 
arrays. With so many weak connections no clustering is apparent. The same is true when 30 
similarities are used. However, when only the top 15 strongest similarities are used, two main 
groups begin to be apparent.  
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Figure 41. When using too many similarity links, 100 in this case, only a single undifferentiated group is 
formed. 

 
Figure 42. The same data clustered with 30 similarity links still does not separate into clusters. 
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Figure 43. With only 15 similarity links the data is no longer completely undifferentiated, some stronger 
similarities are beginning to force the emergence of structure. 

 
When a set of elements have a relatively uniform set of similarities it can be very difficult to 
separate them in to subclusters. However, there may be a few subsets of stronger similarities that 
could divide the data into clusters if these strong ones were allowed to express their influence in 
the absence of the other, mostly homogeneous, similarities. That is, small cliques of vertices may 
be revealed by removing, or cutting similarity relationships that have been constraining the 
vertices such that they remain in an undifferentiated agglomeration. Figure 41, and 42 show that 
no cliques are apparent when using 30 and 100 similarities per vertex for this group of 126 
arrays, even with extremely aggressive edge cutting. On the other hand, the suggestive clusters 
seen in Figure 43 readily break into more detailed cliques when only 15 similarities per vertex 
are used, and when aggressive edge cutting is enabled. 

 

 
Figure 44. Here 100 similarity links were used to cluster and the most agressive edge cutting setting has been 
selected, which cannot overcome the effect of using too many links. 
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Figure 45. Here only 30 links were used and the maximum edge cutting has been enabled, but clusters are still 
not apparent. 

 

 
Figure 46. Finally, with 15 similarity links as in Figure 43, and after aggressive edge cutting, the data are able 
to separate. 
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At the expense of further processing, each of the cliques, or subclusters, revealed in Figure 46 
will organize into structures with greater separation and internal order. For example, Figure 47 
shows the results of allowing this subclustering. Interestingly, one of the clusters remains much 
more tightly gathered together than the others, which suggests the elements in this cluster are 
more similar to each other than the elements in other clusters are to each other. 

 
Figure 47. With 15 similarity links, maximum edge cutting, and extra subclustering iterations, the clusters 
are well separated and individually dispersed. 

Evaluating the utility and significance of the clustering 

 
Clustering algorithms are designed to find clusters. However, one’s initial stance should be that 
there is no reason to suppose that the found clusters are more than artifacts. The very first 
evaluation should be an investigation of the clustering algorithm using exactly the same 
processing parameters, but with randomly permuted versions of the measurements. If the 
clustering algorithm finds clusters or structures in this randomized data then the results with the 
original data should be suspect. The processing methods discussed above have been tested in this 
way and randomized data do not exhibit any organized structure, see for example the analysis in 
[33], where the randomized data resulted in a single, symmetric, and otherwise unorganized 
group of genes, see Figure 48, which shows both the revealed structure in the data and the lack of 
structure in the randomized data. If randomized data shows no structure, then the structures in 
the actual data become more interesting and may possibly be useful. We next address various 
ways to further evaluate the clusters’ meanings and strengths. 
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Figure 48. Clusters of C. elegans genes using 20 similarity links (top) followed by the result when the data 
values have been randomly shuffled (bottom), which show no differentiating structure. 

 

Interactive exploration of the clusters 

 
There are manual explorations that may increase ones confidence in the clusters, and there are 
more rigorous statistical techniques that should be applied. We often explore the clusters looking 
for collocated genes whose collocation makes sense biologically. For example, one of the earliest 
tests we performed was to assure ourselves that, for data from the Spellman cell cycle 
experiment[46], the closely related genes reported by Eisen[47] were collocated in our clusters, 
too. Figure 49 shows one particular set of genes that were strongly related in his study and are 
also very near each other in our clusters.  
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Figure 49. A typical quick check to verify that genes that are known to be related do in fact collocate. 

 
Another sanity check compares the typical expression histories of the genes in each cluster to 
assure ourselves that genes in the cluster have, generally, uniform expression patterns, and that 
these patterns are different in the various clusters. While this is a visual inspection, the idea will 
be recast more rigorously in one of the statistical tests discussed later. Figure 50 shows 
Spellman’s yeast cell-cycle data clustered with VxInsight overlaid with expression traces for 
typical genes in the various clusters. Not only do these traces seem homogeneous with the 
clusters, and different between clusters, but they also have biological significance as the cells 
move through their replication cycle. Surprisingly, the various states in the cell cycle correspond 
to a clockwise progression around the roughly circular layout of gene clusters in this Figure.  
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Figure 50. Cell cycle data with typical expression traces from each cluster (left). Interestingly, the clusters 
layout in a circle corresponding to the temporal cell cycle phases. Similarity links (right) are greatly 
concentrated within the clusters relative to between the clusters. 

 

Statistical exploration of the clusters 

These visual inspections are useful, but more rigorous statistical methods should also be applied. 
Here, two approaches are presented, one of which uses only the available expression data to 
compare correlation differences between and within clusters. The other approach makes use of 
externally available tables of genes which are known to be involved in the various biological 
processes. Genes involved in the same process are therefore assumed to be coordinately 
expressed, and should be, therefore jointly statistically enriched in some of the clusters. 
 
Kim, et al.[33] tested the clusters of C. elegans genes for such enrichment and found significant 
statistical enrichments. These enrichments suggest that other genes in the same cluster could be 
expected to be involved in the indicated processes. This hypothesis was confirmed with 
laboratory experiments in several cases reported in that paper. Enrichment can be computed for a 
given list of n genes out of the total number of genes, N. If a cluster of M genes includes m of the 
n listed genes, then the relative enrichment is (m/M) / (n/N). An exact p-value can, thus, be 
computed assuming M independent Bernoulli trials each with probability, p=n/N.  
 
We published in Werner-Washburn, et al.[36] another useful approach, motivated by the visual 
inspection of expression profiles in and between groups. There the question, “Are two mountains 
in the VxInsight map significantly different from each other?” is answered by comparing the 
empirical distribution of pairwise correlations in each mountain, and also the distributions of 
correlations between the two mountains. There are three ways clusters could systematically 
differ from each other: 
 

• Expression correlations within each of the two mountains could be very different from 
each other, and also different from the inter-mountain correlations. 

• The correlations might be vaguely similar in each of the mountains, but their inter-
mountain correlations could be noticeably different from the correlations in either 
mountain. 

• The correlations in each mountain could be noticeably different from each other, but the 
intermountain correlations could have some intermediate value, such that the 
intermountain correlations could not be detected as being different from either of the 
mountains, even if the mountains were, themselves, statistically different. 

 
The first case corresponds to strongly separated clusters, the second to weakly separated clusters, 
and the third case corresponds to a gradual gradation from one cluster into another. However, 
there is only one way that the genes can be incorrectly separated into different groups: that is, if 
all three groupings are found to be indistinguishable. 
 
If the gene expressions for genes in, and between, the two mountains were really 
indistinguishable (the null hypothesis), then analysis of variance (ANOVA) should fail to detect 
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a significant difference between the means of the three sets of correlations. We tested a number 
of clusters using ANOVA to assure ourselves that the clustering was significant. 
 
Briefly, we started with two non-intersecting gene lists, GroupA and GroupB. We computed all 
possible correlations between the genes in GroupA, all possible correlations between genes in 
GroupB, and finally the correlations between every gene in GroupA with every gene in GroupB. 
These individual correlations were transformed to their corresponding T-statistics, which are 
directly related to the p-values associated with observing the correlations when the expressions 
are not actually correlated. Analysis of variance was performed to test if the mean correlations 
for these three different groups were significantly different. Under the null hypothesis, one 
would rarely see large F-statistics from this analysis. On the other hand, ANOVA should uncover 
a difference if the genes in the two VxInsight clusters were correctly separated into different 
groups. That is, we expect ANOVA to yield a very small p-value when the expressions for genes 
in either mountain are more like the expressions for genes in the same mountain than they are for 
genes in the other mountain. Further, when the correlations between the two clusters are different 
from the correlations in at least one of the mountains, ANOVA should also allow us to reject the 
null hypothesis. In either case we would conclude that the VxInsight clusters are not artifacts. 
This test was used in Werner-Washburne, et al. to show that a subset of genes associated with 
cell cycle phase G1 were collocated with p<0.001, and further that CLB6, RNR1, CLN2, TOS4, 
and SVS1 collocate with p<0.0001 for cells exiting from long-term stationary phase. 

 
These reported methods have been useful in showing that the clusterings are not chance 
occurrences, and have led to scientific insights. However, these approaches have not addressed 
two other important issues related to clustering. First, how stable are these clusters with respect 
to variations in the measurements. Second, how stable are they with respect to different random 
initializations of the VxOrd clustering algorithm, which has an inherently stochastic nature. We 
turn our attention to these issues in the next section.  

Stability of clusters 

Much of the following work has been reported in[26], from which liberal quotes are extracted 
here. However, the subsequent analysis of the clustering algorithm to determine the most central 
ordination from a sample distribution of ordinations is new. 
 
To test the stability of the algorithm to random starting points, we ran 100 re-ordinations of the 
Spellman cell cycle data[46], which had about 6000 genes. Each re-ordination was started with a 
different seed for the random number generator. We then visually marked the elements of a 
cluster in one ordination and looked to see if they were still visually clustered together in the 
other ordinations. We then computed the neighborhood statistics as described below. 
 
To determine if small changes or noise in the similarities would give small changes in the 
ordination results we ran eighty re-ordinations where we added noise drawn from a gaussian 
distribution with mean zero, and standard deviations 0.001, 0.010, 0.050, and 0.100, and 
recomputed the ordinations (these noisy correlations were clipped to remain in the valid range of 
the correlation coefficient [-1.0, +1.0]. These different ordinations were compared, visually and 
statistically. 



 65

 

Evaluation methods 

We compared the various ordinations using a neighborhood analysis. When two ordinations are 
very similar it is reasonable to expect that for every gene, the set of its nearest, say 60, genes 
would be almost identical in both ordinations. In fact, we would expect the same thing for every 
gene in the entire ordination. On the other hand, if the ordinations have almost nothing in 
common, it should be rare to observe a gene that had the same neighbors in both ordinations. We 
computed these neighborhood statistics for each gene, in each of the two ordinations. For each 
gene, we first identified the 60 nearest genes, and then counted of the number of genes in both 
neighborhoods. This number was used to increment the value in a table, so that in the end, we 
had a histogram showing how many genes had no common neighbors in the two ordinations, 
how many had one common neighbor, etc., up to the number of genes with exactly the same 60 
neighbors in both ordinations, and histograms were prepared, as shown in Figure 51. 
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Figure 51. Distribution of neighbors between ordinations with random starting conditions, 20 replicates. 

We then visually compared the results of the two ordinations by coloring all of the genes in a 
cluster found in the first ordination and seeing where those colored genes were placed in the 
other ordination (so that a similar ordination would not break up the group of colored genes, but 
would still have them co-located; see Figures 52 and 53). 
 

 
Figure 52. Ordinations with different random starting conditions. 
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Figure 53. Demonstrates the affect of increasing edge noise on cluster stability. 
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Figures 54. Histogram of neighborhood stability with added noise (std 0.001). 
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Figure 55. Histogram of neighborhood stability with added noise (std 0.010). 
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Figure 56: Histogram of neighborhood stability with added noise (std 0.050). 
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Figure 57 Histogram of neighborhood stability with added noise (std 0.100). 

Clustering process discussion 

 
The computational experiments revealed two types of information. First, we discovered that 
large-scale structures were often very robust to starting with different initial conditions. Second, 
where there were differences, the insights about why the cluster positions changed were as 
interesting as the fact that they did change. We present two measures of the stability of these 
structures: a visual interpretation, and the results of our neighborhood analysis. The visual 
interpretations are striking in their clarity, but are also supported by the numerical results shown 
in the histograms. 

The histogram numbers can be interpreted as data drawn from a binomial distribution. For 
example, if the two ordinations were totally random, then the neighbors of a gene in the second 
ordination would be randomly drawn from all the rest of the genes. Given that we had about 
6000 genes, and used a neighborhood size of 60, about 1% of the total genes, the probability of 
exactly k neighbors in the intersection would be  
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When the size of the neighborhood is 1% of the total number of genes the expected frequency for 
observing 0 neighbors is about 0.547; the expected frequency for observing 1 neighbor is about 
0.332; and the frequency for two neighbors is about 0.099, which leaves the expected frequency 
for observing three or more neighbors in common to be only 0.022. For 6000 genes, only 132 
genes would be expected to have more than two neighbors in common between two random 
ordinations, which is more while several thousand are actually observed. Hence, the histograms 
and the visual comparisons show that the differences between pairs of our ordinations are very 
far from being random.  
 
Figure 52 shows six typical ordinations from different starting conditions. Groups in the first 
ordination were outlined by hand and colored. These same genes were followed in the other 
ordinations to observe how their relative positions changed. Two striking patterns emerged. In 
one case the clusters were almost identical to the initial cluster despite different random seeds. In 
the second case the resulting clusters are a mirror image of the initial clusters. This mirroring is 
very reasonable, as there is no reason to expect any preferred natural placement as long as the 
relative distances are preserved, so rotations and reflections should be, and were observed. The 
histograms showed good neighborhood agreements between mirrored images.  
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Closer attention to the structures does reveal a few large changes, for example in Figure 52, 
where we note that the red cluster has flipped from the inside to an outside configuration. This 
red cluster has a few strong similarity links tying it to the ridge. As a result, it can easily be 
mirrored with respect to the ridge. Note that the neighborhood analysis would only detect a few 
differences along the frontiers of the two clusters. As expected, the histograms show very little 
difference between the two ordinations with respect to the neighborhood analysis. The most 
encouraging fact is that most groups not only maintain their relative positions given different 
starting conditions, but that they maintain similar cluster shapes as well, which indicates good 
interior agreement, which is, again, supported by the histograms. These results indicate that the 
ordination tool has robust stability when presented with the same dataset. With that information 
in hand, we began the investigation of how small changes in the similarity data affected the 
clustering. 
 
Ideally, one would want an ordination algorithm that responded to slight changes in the 
similarities by producing slight changes in the ordination and that, in some way, moved smoothly 
from well ordered groupings to totally unordered, high entropy groupings as the similarities are 
mixed with more and more noise. Figure 53 shows a starting cluster based on the actual 
similarities, together with four cases where increasing amounts of noise were added to the 
correlations. Figures 54-57 are the corresponding histograms reflecting the changes associated 
with the increasing noise. Note that several large structures remain intact as noise is added, but 
that some (for example the purple and brown clusters) become more disordered. They essentially 
melt with increasing noise. Also, note the red and green clusters are apparently more resistant to 
noise. This melting metaphor is particularly appropriate, because it reflects the internal order that 
must be ‘randomized’ or melted before the cluster can begin to break apart.  
 
Mixing increasing amounts of noise with the similarities allows one to quickly see which clusters 
are more likely to be an artifact; these are the clusters that melt out with the smallest amount of 
noise. This information is so easy to obtain that we believe it should be part of every analysis 
based on clustering.  
 

Finding a most representative clustering. 

 
Each randomly restarted ordination by VxOrd represents a sample from a distribution of possible 
ordinations arising from the particular similarity file. From this perspective, one might want to 
identify the best ordination, which is particularly hard because it is an extreme, and further 
because the concept of best cluster or best ordination is not particularly well defined. However, 
the idea of a  most representative ordination, or most central ordination (MCO) can be defined 
with respect to the sample of observed randomly restarted ordinations. In this case, as previously 
described, two ordinations are compared by neighborhood analysis to create a single measure of 
overall similarity between the two ordinations. In particular, the sets of the N nearest neighbors 
are found for every gene in both ordinations. Then the total numbers of intersections are 
accumulated; that is for every gene, the number of common genes listed in its neighborhood sets 
are summed together across every individual central gene. The sum may be used directly, or an 
entropy measure may be computed by weighting the rareness of particular intersection sizes. 
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With this method for comparing two ordinations, one can make all possible comparisons of the 
available randomly restarted ordinations and then select the ordination that is, on average, most 
like all the remaining re-ordinations. This idea of centrality of the distribution of ordinations 
might be further extended to the second moment to compute some measure of dispersion, which 
perhaps could eventually be extended to allow some sort of hypothesis testing about these 
ordinations. However, we have only investigated the centrality issue. 
 
We used massively parallel computers to calculate hundreds, or in some cases thousands, of 
reclustering ordinations with different seeds for the random number generator. We compared 
pairs of ordinations by counting, for every gene, the number of common neighbors found in each 
ordination. Typically, we looked in a region containing the 20 nearest neighbors around each 
gene, in which case one could find (around each gene) a minimum of 0 common neighbors in the 
two ordinations, or a maximum of 20 common neighbors. By summing across every one of the 
genes an overall comparison of similarity of the two ordinations can be computed. We computed 
all pair wise comparisons between the randomly restarted ordinations and found the ordination 
that had the largest count of similar neighbors across the totality of all the comparisons. Note that 
this corresponds to finding the ordination whose comparison with all the others has minimal 
entropy, and in a general sense represents the most central ordination (MCO) of the entire set. 
Figures 58, 59, and 60 show the entropies, the intersection counts, and the cross plot of entropy 
and intersection for a data set that we had, otherwise, found very difficult to break into stable 
clusters. Even for this experiment, it is obvious that a few ordinations are more central. Note that 
these results suggest the distribution of possible ordinations is very diverse. 
 

 
 

 

Figure 58. The distribution of observed entropies from the ordination comparisons. 
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Figure 59. Neighborhood intersection counts from the comparison of ordination pairs sorted into increasing 
entropy order, as shown in previous figure. 

 

 
Figure 60. The comparison of total entropy and total intersection counts for the ordination pairs being 
compared. 

It is possible to use these comparison counts (or entropies) as a derived similarity measure to 
compute another round of ordinations. For example, given that 200 random re-ordinations have 
been computed, one can compute the total number of times gene, Gj, turns up in the 
neighborhood of gene, Gk, in the available 200 ordinations. This count, or the average number of 
times the two genes are near each other, will be high when the two genes are generally collocated 
(which should be a reflection of similar expression profiles for Gj and Gk). The clusters from this 
recursive use of the ordination algorithm are generally smaller, much tighter, and are generally 
more stable with respect to random starting conditions than any single ordination. Figure 61 
shows the Most Central Ordination from this derived similarity. The locations of the elements of 
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a few of those clusters are then shown in Figure 62 (by similar coloring) in the Most Central 
Ordination based on the original similarities. Figure 63 shows the same locations, but within the 
first of the 200 single re-ordinations, i.e., just one ordination with no attempt at finding 
centrality. These figures show that the similarities derived by entropies are useful for identifying 
clusters that may do even better than the Most Central Ordination based on the original 
similarities from Pearson’s R.7  
 
We typically use all of these methods (computing the MCO from among about 100 to 200 
random re-ordinations, and computing neighborhood set sizes ranging from 10 to 30 by steps of 
5) during exploratory data analysis to develop intuition about the data. Interestingly, the process 
of comparing pairs of ordinations results in an over all similarity between the two ordinations. 
These similarities can be used to create clusters of the clusterings! 
 
Figure 64 show an example where we found that the random re-clusterings seem to fall into two 
different attractor basins, which may be interpreted as a sign that there are two different, but 
perhaps equally valuable ways to look at the data, and that no single cluster will be able to 
represent both of these ways of looking at the data.  
This section has attempted to show that clustering is a difficult task, and that stochastic 
reclusterings should always be examined before accepting any particular clustering. In the next 
section, we turn to the initial evaluations of a data set using the visualization environment 
VxInsight. There we will see how VxInsight makes use of a terrain metaphor for the data, which 
helps an analyst find, and memorize many large scale features in the data. We will also see how 
it serves as a visual interface to the database of meta-information about the measurements, and as 
an interface to expression plotting and links to external databases of annotation information. 
 

                                                 
7 However, the ordination should be examined for biological sense before deciding which similarity measure is 
better for a particular experiment. 
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Figure 61. Clusters derived by using the neighborhood intersection counts as a new kind of summary 
similarity. This type of clustering is often relatively stable, and tightly grouped. 
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Figure 62. The most central ordination, MCO, created from 200 random ordinations base on the original 
expression similarities. The colors represent the groupings from in the previous figure, which used a 
similarity based on neighborhood intersections. 

 

 
Figure 63. A single ordination based on the original expression similarities. The colors represent the clusters 
shown in Figure 61 arising from the neighborhood intersection count similarities. 
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Figure 64. The process of comparing the individual clusters results in an overal similarity between the two 
clusters. This overall similarity can itself be used to create a cluster-of-clusters. In this particular case, there 
seem to be two attractor basins, suggesting the data may have two useful projections. 

 
 

Using VxInsight to analyze microarray data 
Microarray experiments often produce such prodigious quantities of data that one is tempted to 
rely on statistical, or other mathematical filters. These automated approaches should always be 
evaluated, and exploited to the maximum capacity possible. However, human pattern recognition 
and anomaly detection can also be very powerful, especially when the large quantities of data are 
presented in an easily visualized manner, and when the researcher can quickly and easily explore 
not only the raw data, but connections with external data, such as annotations or clinical 
information. The VxInsight information visualization and visual, database interface is a very 
powerful aid to this kind of exploratory data analysis. The previous section discussed how array 
data can be clustered, or ordinated for use with VxInsight. We now turn our attention to the 
specific features of this visual interface that are useful for analyzing microarray data. 
 
Figure 65 shows a typical visual presentation of clustered microarray data. The central paradigm 
is to present the clusters via a terrain metaphor, which has proven to be particularly useful 
because humans seem to have an innate capability to memorize and navigate through terrains and 
symbolic representations, or maps, of the terrain. In the case of VxInsight, the height of the 
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mountain represents the number of data elements clustered under the mountain, and the physical 
separations encode the relative similarities between the data items, such that mountains closer 
together will have more similar data elements than mountains further apart. At this highest level 
one can only see the global structure of the clustering, however, it is possible to zoom into these 
mountains to see finer and finer structures, all the way down to individual data items, see Figures 
65 and 66. 
 
At any time in the analysis, one can form a query to the underlying ODBC-compliant databases, 
which typically contain specific information such as annotations, or clinical information. These 
queries are entered using the Graphical User Interface (GUI) in the left hand side of the screen. 
The results of these queries are displayed not as a list of text, but visually within the context of 
the clustering (note the query legend at the bottom right hand side of the screen, and the 
corresponding colored spots across the cluster terrain). Often this contextual presentation is the 
important result of the query, not the specifics returned from the query. 
 

 
Figure 65. VxInsight terrain metaphor and interaction features. 

 
Figure 66 shows a close up, after zooming into the region in outlined in Figure 65. To help 
maintain ones sense of direction when viewing the clusters at high levels of magnification, the 
global location of the current view is displayed in the small image near the upper left hand side 
of the screen. The magenta square in that image shows the particular location and scale of the 
larger view, with respect to the overall clustering. This particular image shows the collocation of 
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a set of genes that were closely clustered together in Eisen’s original analysis of the Spellman 
yeast cycle data.  
 

 
Figure 66. A detail view of the region marked in Figure 65 demonstrating the collocation of histone genes 
previously known to be closely related. 

 
Figure 67 shows several useful features of the visual interface. For example one can request the 
display of specific information about the cluster mountains or (at the lowest level) the individual 
data elements themselves. In this case the gene names are displayed. In other cases, a summary is 
automatically constructed, based on the collection of elements under the mountains, and 
displayed above the mountain. Clicking on the representation of a specific element (the 
individual pyramids) will cause an automatic database query about that element, the results of 
which are displayed in the form at the top of the screen.  
 
Several analysis features are available from the menu bar at the very top of the screen, for 
example the expression profiles of a gene and its nearest neighbors can be plotted. Figure 68 
shows the popup GUI that allows the control of the number of neighbors to be plotted, and 
Figure 69 shows an example plot from this cell cycle data set. The produced HTML page is 
automatically displayed in a browser window, and includes plots and hot links to web-based 
annotations for each of the genes. These features constitute the general, exploratory analysis 
tools. We now turn to an example of how these tools have been used in an analysis, and a 
discussion of a few very extensions to VxInsight which are specific for array analyses. 
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Figure 67. Useful annotation options and features. 
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Figure 68. The popup GUI used to request the expression plots for a selected gene and its nearby neighbors. 
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Figure 69. A plot of gene expression levels across two cell cycles, following Figure 68. 

 

A few typical steps in an analysis when using VxInsight 

 
VxInsight is very useful for an initial sanity check of a dataset. We will typically cluster the 
arrays to look for mistakes in the scanning, or data processing, which might have duplicated an 
array. A duplication will often be apparent in the experiment because the pair of duplicated 
arrays will cluster directly on top of each other, and will typically be far from the other clusters. 
We have discovered that many datasets cluster more by the day the samples were processed, or 
even by the technician processing the samples, than due to biologically relevant factors. To test 
this we will use the “label peaks” feature as shown in Figure 70. If almost 100% of a particular 
processing set clusters by itself, that is a real concern. One can often see the effect of 
confounding experimental conditions using this same method. For example, if a set of arrays are 
processed by the date they were collected, and the date corresponds to separate individual 
studies, then the processing set (date) will be confounded with the study number. Well designed 
studies control such confounding by randomizing the processing order, or by carefully balancing 
the processing order. However, it is always wise to use these exploratory analysis methods to 
ensure that your main effect has not somehow been confounded.  
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Figure 70. Here the label peaks feature is enabled, which in this case shows the two most numerous 
processing sets in each cluster. When a cluster is almost 100% from a single set, then the cluster is likely due 
to set specific conditions rather than biologically important differences. 

 
Figure 71 shows another example, which could be a cause for concern. In this case there are 
apparently two strong clusters, which have been labeled by an experimental condition. While the 
experimental condition is not completely driving the separation, there is some separation by that 
condition within the first cluster (green elements mostly on one side of that cluster and white 
elements mostly on the other side). However, the two green elements in the midst of all of the 
white ones in the second cluster are very suspect. Any anomalous event like this should be 
carefully examined by looking for possible mistakes in processing or labeling. In this particular 
case, it turned out that all of the arrays in the second cluster were from samples that had 
extremely poor mRNA yields, possibly due to the age of the samples. The apparently anomalous 
two green elements were clustered with this group because the expression levels in these samples 
with  disintegrating cells were so different from those samples with healthier cells, which cluster 
in the left hand group.  
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Figure 71. The discovery of two genes (green) clustering in the midst of another large group of genes (white) 
should raise a flag and lead ought to motivate further investigations to see if these two arrays could have been 
mislabeled. 

 
A more interesting phase of analysis begins after obviously the bad data have been culled and the 
remaining data have been reclustered. The data may be clustered in either of two ways. The 
genes may be clustered in an effort to identify possible functions for unstudied genes by using 
the known functions of genes that are clustered near the unstudied ones (see [33]. and [36] for 
example).  
 
The other approach, which is often seen in clinical studies, clusters the arrays (the patients) by 
their overall expression patterns. These clusters will hopefully correspond to some important 
differentiating characteristic; say, something in the clinical information. As the analysis proceeds 
various hypotheses are created and tested for reasonableness. The plotting features are helpful at 
this point, especially because the browser page with the plots will also have links to external, 
web-based information.  
 
Identifying mechanisms which might be responsible for the observed array clusters requires the 
simultaneously analysis of both the results of clustering by arrays and the original gene 
expressions. At the highest level, one may wish to select two clusters of arrays and ask which 
genes have significantly differential expressions between these two clusters. Given any method 
for identifying such genes, it is useful to display them within the context of the cluster-by-genes 
map. Sometimes the most strongly differentiating genes for the clusters of arrays will not be 
named, and may not have been previously studied. In this case, it can be very useful to see which 
known genes cluster around these unstudied genes in that cluster-by-genes map.  
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This analysis process begins with the use of any one of the available methods to select two or 
more sets of arrays. Then individual genes are contrasted across the sets with, say, a t-test, or 
analysis of variance. These statistics can then be used as an index to sort the most highly 
contrastive genes into an ordered gene expressions. This is schematically described in Figure 72, 
which shows the original table of array data, which has been clustered both by arrays and by 
genes. The lower map represents the result after clustering-by-arrays, and shows two highlighted 
clusters (colored white and green, respectively). The genes with strongly differential expressions 
between the groups of arrays are shown to the right of this map. Note that the list is sorted by a 
statistical score, and also contains links to the available web-based annotations. A curved arrow, 
in the figure, suggests the path between the gene list and the cluster-by-genes image. That 
connection is implemented with sockets, and forms the basis of a more general analysis tool, 
which allows an arbitrary gene list to be sent from the analysis of the arrays to the analysis of the 
genes. The creation and stability of these gene lists is an especially important issue, because they 
are the first stepping stones toward explanatory stories about possible mechanisms.  
 

 
Figure 72. The array of expression data for a large number of experiments is shown being cluster by genes, 
and also by arrays. A list of genes is shown, which have different expressions between two groups of arrays. 
This list includes a short annotation, and links to more extensive, web-based annotations. 

Generating gene lists and establishing their stability 



 83

Analysis of variance (ANOVA) was used to determine which genes had the strongest differences 
between pairs of patient clusters. These gene lists were sorted into decreasing order based on the 
resulting F-scores, and were presented in an HTML format with links to the associated OMIM 
pages, which were manually examined to hypothesize biological differences between the 
clusters.  
 
We also investigated the stability of those gene lists using statistical bootstraps (46, 47). For each 
pair of clusters we computed 1000 random bootstrap cases (resampling with replacement from 
the observed expressions) and computed the resulting ordered lists of genes using the same 
ANOVA method as before. The average order in the set of bootstrapped gene lists was computed 
for all genes, and reported as an indication of rank order stability (the percentile from the 
bootstraps estimates a p-value for observing a gene at or above the list order observed using the 
original experimental values). 
 
Identifying gene lists 
 
A list of genes with differential expression can be found for questions such as, “which genes 
differentiate Cluster-1 from Cluster-2,” or “which genes differentiate Cancer-1 from Cancer-2.” 
In the first case the selection of the groups can easily be done by drawing rubber band lines 
around the clusters inside the VxInsight display. In the second case, the groups are most easily 
defined by means of a query to the associated database. In either case, once the groups of arrays 
are available, the entire set of genes can be searched to find those which have the greatest 
differences in expressions between the two groups. There is a wide variety of approaches to 
finding such an ordered list. Here, we use very straightforward statistical techniques. 
 
A gene-by-gene comparison between two groups, Group-1 and Group-2, can be accomplished 
with a simple t-test, however, we wanted to eventually support comparisons between more than 
two groups at a time, so we actually use Analysis of Variance (ANOVA). This processing results 
in an F-statistic for each gene. The list of genes is sorted to have decreasing F-scores, and then 
the top 0.01% of the entire list is reported in a web-page format. Figures 73, 74 and 75 show the 
three sections of the HTML report.  
 
We have found that it is important to capture a minimal amount of information about why the 
analysts wanted to run the contrast. Without this information, it is very easy to accumulate many 
pages of information, but after a few weeks no one may be able to remember the details about 
the specific query, nor the motivation for making it. As a result, the analyst first enters a few 
lines of free text, which is placed at the beginning of the HTML file, see Figure 73. Typically, 
this information includes who ran the contrast, the date it was run, information about the way the 
data had been previously processed, and most importantly, the reason for the contrast including 
the hypotheses being tested. For the same archival reasons, the VxInsight screen images are 
captured to show the locations of the selected arrays, i.e., where they are included in the two 
groups, see Figure 74. Finally, Figure 75 shows the first few genes in the differentiating genelist. 
A plot of the contrasted expressions may be obtained by clicking on the contrast (the mean 
expression in Group-1 minus the mean expression in Group-2) value for a gene, see Figure 76. 
Figure 77 shows the NCBI webpage with the OMIM annotations for the gene top gene, which 
may be accessed from the genelist page by selecting the OMIM Details link. 
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Figure 73. The top portion of the web page records the reasons that motivated the query, the hypotheses 
being tested, and details about the data and the scientist who made the query. 
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Figure 74. The second part of the web page shows the locations of the two groups being contrasted. 
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Figure 75. The final part of the web page showing the ordered gene list together with details about its stability 
and links to the data plots and more detailed annotations at OMIM. 
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Figure 76. A typical expression plot showing the expression levels for the two groups. 
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Figure 77. The gene annotations at OMIM are accessable directly from the genelist. These are often sufficient 
to understand the function of the gene, but references to the primary literature are also accessible from this 
web page. 

 
These figures indicate how an analysis typically progresses. First a question is posed within the 
VxInsight framework and a statistical contrast is computed for that question. The gene list is 
initially examined to see if any genes are recognized by their short descriptions, which, if 
available, are included with the genes. The plots are examined, and the OMIM annotations are 
read. If the gene appears to be important, the literature links and other relevant NCBI resources 
are studied. This analysis step is very labor and knowledge intensive; it requires the bulk of the 
time needed to make an analysis. As such, it is very important to not waste time following leads 
that are only weakly indicated. That is to say, before one invests a great deal of time studying the 
top genes on a list, it is important to know that those highly ranked genes would likely remain 
highly ranked if the experiment could be repeated, or if slight variations, or perturbations of the 
data had occurred. The column labeled “Bootstrap average order” in Figure 75 encodes the upper 
95% confidence band, the centered 95% confidence band, the average rank order of the gene as 
derived from the bootstrap computations discussed below.8 A gene that is not consistently ranked 

                                                 
8 For example in Figure 76, the gene NM_005356, analysis lymphocyte-specific protein tyrosine kinase, was observed 
to be the fifth ranked gene with the actual data, while it was found to have an average rank order of 5.8 across the 
bootstraps. Further, 95% of the time that gene was ranked at or above rank order 12, which is the one-sided upper 
confidence band for the ranking. Also, 95% of the time it was ranked between 3 and 12, which is the centered 
confidence band for its ranking. Note, that the lower ranking for both confidence bands is reported to be 12, which is 
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near the top of the list is probably not one that should be investigated in detail. That column also 
includes a p-value, which indicates the fraction of time this gene was ranked at its observed (or 
higher) list position given the assumption that there was no true difference between its 
expression in Group1 and Group2, which was, again, computed by bootstraps as described 
below. 
 
The critical issue about any ordered list of genes is, “can we have any confidence that this list 
reflects any non-random trend?”9 To be very concrete, suppose that My Favorite Gene (MFG) is 
at the top of the list from our ANOVA calculations, i.e., MFG had the largest observed F-statistic 
from the ANOVA. What can we conclude about the observed ranking for MFG? Certainly, a 
naive use of the F-statistic has no support because we tested, say, 10,000 genes and found the 
very largest statistic from all of those tests. So, an F-value for p=0.001 would likely be exceeded 
about 10 times in our process even if all the numbers were random. Hence, the reported F-
statistic should only be considered to be an index for ordering the values. 
 
However, if we could repeat the experiment, and if MFG was truly important, it should, on 
average, sort into order somewhere near the top of the gene list. We cannot actually repeat the 
experiment, but we can treat the values collected for a gene as a representative empirical 
distribution for the respective groups. If we accept that this distribution is representative, then we 
can draw a new set of values for each of the two groups by re-sampling the corresponding 
empirical distributions repeatedly with replacement, see Figure 78 for a schematic representation 
of these distributions. This is Efron’s bootstrapping insight[48], and forms the basis for our 
processing.  
 

                                                                                                                                                             
possible when a ranking of 12 is observed many times so that the upper confidence band includes only some few of the 
rankings of 12th in the list, while the centered confidence band will naturally include more of them. 
9 Every list of, even random, numbers can equally well be sorted into order and will, of course, always have a top 
ranked value. 
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Figure 78. A bootstrap method uses the actual measured data as an estimate for the underlying distribute 
from which that data was drawn. One can then sample from that estimated underlying distribution by 
resampling (with replacement) from the actual measurement.  

 
Consider Figure 79, where we resample for every gene across all of the arrays in the two groups 
to create, say, 100 new experiments that are then processed exactly the same way as the original 
measurements were processed. We compute ANOVA for each gene and then sort the genes by 
their F-value. As we construct these bootstrapped experiments we accumulate the distribution for 
where in the list each gene is likely to appear. Using these bootstrap results one can determine, 
for each gene, its average order in the gene lists. The distributions for such order statistics can be 
written, but they are complex. On the other hand the bootstrapped distributions are easily 
accumulated and are acceptable for our needs. In addition to the average ranking, we count the 
95% confidence bands for each gene’s ranking as estimated by the bootstraps. We report both the 
upper 95% confidence band and the 95% confidence interval centered around the mean ranking 
for each of the genes. The lower limit of this upper 95% confidence band, LLUCB, is recorded 
for later use (note that 5% of the time we would observe a ranking below LLUCB by random 
chance even when Ho is false, given the two empirical distributions). 
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Figure 79. The actual data is processed to create the genelist schematically shown at the bottom left. Then the 
actual data is resampled to create several bootstrapped datasets, which are processed exactly the same way as 
the real data to produce a set of genelists. The average order, and the confidence bands for that order, can be 
estimated from this ensemble of bootstrapped genelists. 

 
 
A caveat is warranted for these confidence bands. They do not imply that we have a p-value of 
0.05 for a ranking, but they do strongly suggest how important a gene is in separating the arrays 
into the two groups. For instance, if a gene really has no power to separate the groups, then on 
the average we would see it have a very low average rank order. On the other hand, if a gene is 
consistently near the top of each of the bootstrapped gene lists, then that gene may be worthy of 
further investigation. 
 
We can, however, investigate the p-values for the observed rankings of these genes under the 
null hypothesis, that there is no difference in gene expression between the two groups (Group-1 
and Group-2). In this case (when Ho is in fact true) the best empirical distribution would be the 
unordered combination of all the values without respect to their group labels. To test this 
hypothesis, we create, say, 10,000 synthetic distributions by bootstrapping from this combined 
empirical distribution, and process them exactly as we did the original data.  
 
We are interested in what fraction of the time we observed a particular gene ranking higher in the 
bootstrapped results than the appropriate critical value. There are several reasonable choices for 
this critical value. We could use the actual observed ranking, or the average ranking from the 
bootstraps under the assumption that Ho was false. Instead, we take an even more conservative 
stance and choose a critical value using a power analysis to control our chance of a Type II error, 
we set beta=0.05, or 5%.  
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If Ho were false (i.e., if the groups do have different means) then the earlier bootstrapping 
experiments suggest that one might randomly observe a ranking as low as LLUCB about 5% of 
the time. Hence, we examine the later bootstrap experiments (under Ho assumed true, and thus no 
group differences) and find the fraction of the times that we observe a ranking at or above 
LLUCB. This value is reported, gene-by-gene, as the p-value for the actual rankings. In essence, 
we are saying that if Ho is true, then by random chance we would have seen the gene ranking 
above LLUCB with probability p. As LLUCB is much lower than the actual ranking, this p-value 
is very conservative for the actual ranking. 
 
To investigate the meaning of the actual F-statistics used to index these gene lists, we computed 
another bootstrap experiment. We were interested in the effect of scaling the original expression 
values by their savage-scored order statistics. As previously discussed, this scoring is felt to be more 
robust than taking logs. However, we were concerned that this might influence our p-values, so we 
developed a code to estimate the expected F-statistic for the n-th ranked gene in a gene list from two 
groups, Group-1 and Group-2 respectively having j and k arrays. This code computes a large 
bootstrap after randomizing the savage scores within each of the j+k arrays. The code then computes 
the ANOVA for each gene and eventually sorts the resulting genes into decreasing order by F-
statistics. The final result is a p-value (by bootstrap) for the two groups with the specific number of 
arrays. This computation is rather intensive, and should either be fully tabulated or run only as 
needed for genes uncovered by the earlier methods. We have not run extensive simulations of this 
code against the p-values or the list order distributions, but the limited checks did suggest that genes 
which always ranked near the top of the differentiating gene lists do have rare F-statistics based on 
the savage-scored orders relative to the expected random distributions (data not shown). 
 

Comparing gene lists 

 
The ANOVA plus bootstrap approach described above is only one way to find genes which may 
have important roles with respect to particular biological questions. For example, others have 
produced gene lists by principal component analysis (PCA), gene shaving, Bayesian networks, 
various forms of machine learning, fuzzy sets, and other classical statistical methods, among 
many other methods. By using several of these methods one might hope to find a consensus list 
of genes. Our experience has show that this is possible; while the lists from different methods are 
generally not exactly the same, they often do have large intersections. However, the 
simultaneous comparison of multiple lists has been a difficult problem.  
 
We have developed a number of methods to help us understand that the lists may be different in 
the details, but still very similar biologically, which makes sense considering that different 
methods might identify different, but closely related elements of regulation or interaction 
networks. In that case, the methods are suggesting the importance of the network, and the 
particular region in that network, even though they do not identify exactly the same elements. 
This relatedness suggests something similar to the kind of “guilty by association” method that 
has been used to impute gene functions to unstudied genes that cluster near others with known 
function, as in[33]. Indeed, something similar can be used to evaluate the similarity of multiple 
gene lists. 
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Figure 80 shows a VxInsight screen for clusters of genes. Highlighted across the clusters are 
genes identified by different methods (shown in different colors). In this particular case one can 
see that the various methods do identify genes that are generally collocated, which suggests that 
gene regulations and interacting networks do probably play a strong role with respect to the 
question under consideration (here, for example, the question was “which genes are differentially 
expressed in two types of cancers.”). However, multiple methods do not always produce such 
strong agreement, as shown in Figure 81. In this case the question was, “which genes are 
predictive for patients who will ultimately have successful treatment outcomes,” and no clear 
consensus is apparent. Interestingly, the ANOVA plus bootstrap method suggests a very stable 
set of genes for the first question, while the list for the second question is not stable and has 
confidence bands spanning hundreds of rank order positions (data not shown). 
 

 
Figure 80. The general collocation of genes identified by different algorithms (shown with different colors). 
This collocations suggests that the different methods are in reasonable agreement. 
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Figure 81. Here the genes selected by each method are widely separated and show no coherence, suggesting 
that there a lack of consensus among the methods. 

 
When two methods produce similar gene lists the coherence may be due to the underlying 
similarity of the methods more than to any true biological significance, for instance Fisher’s 
discriminant and the ANOVA methods are much more similar to each other than to Bayesian 
networks. Further, many methods will be heavily influenced by differences in the first few 
principle components of the gene expression data. On the other hand, methods, such as recursive 
elimination[49], perhaps aided by “boosting” [50] are able to examine the simultaneous efficacy 
of groups of genes, some of which, individually, may not be discriminatory in the first or second 
principle component. One way to understand these differences is by considering where selected 
genes project onto the plane of the first two principal components; see Figure 82, which 
schematically represents a few genes from three methods, identified by different colors. 
 

 
Figure 82. A few genes from three different methods are schematically shown intersecting the unit sphere and 
the projection of those intersections down onto the plane of the first two principle components. Note that 
genes near that plane will have projections that fall close to the arc of the sphere, while those above or below 
the plane with have intersections that fall well within the arc of the sphere. 

 
In this approach, each gene is considered to be a point in patient-space, where each dimension 
corresponds to a different patient. Since, in this case, there were 12,625 genes and 126 patients, 
the spatial representation had 12,625 points (samples) in a 126 dimensional space. Of the 12,625 
genes we only considered about 600 that occurred in the different gene lists, reducing our 



 95

problem to 600 genes in 126 dimensions. Furthermore, because we were mainly interested in 
how the genes compared as discriminators, and not how their actual expression levels compared, 
we projected the genes onto the 126 dimensional unit sphere in patient-space, as suggested in 
Figure 82. Geometrically, this corresponds to comparing the “directions” of the genes in the 
various gene lists as opposed to their “magnitudes”. 
 
In order to understand this visualization is it useful to imagine a sphere with a plane passing 
through the origin. The sphere corresponds to the unit sphere (the sphere with radius one 
centered at the origin) in the patient space and the plane corresponds to the plane determined by 
the first two principal components. The first principal component points in the radial direction of 
the sphere and the second principal component is tangential to the sphere at the sphere’s 
intersection with the first principal component. It is precisely the first two dimensions that are 
shown in Figure 83. The vector representing a particular gene will intersect the unit sphere, and 
will be near the arc of the sphere (unit circle) in the plane if it lies in the first two principal 
components. To the extent that the gene lies above or below the plane of the first two principle 
components, the projection of the intersection back down onto the plane will lie further inside the 
arc. The distribution of these projections onto that principal component plane suggests how a 
given method of gene selection identifies important genes. 
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Figure 83. ALL vs. AML gene lists comparison. The gene lists that characterize ALL versus AML are 
shown, with a different color for each of the methods used to obtain them. In distinguishing infant ALL 
from infant AML we found that most of the genes in the list were co-localized in our representative 
visualization. Compare this plot with the results shown in Figure 84. 
 
One of the main observations that can be made is the division of the gene lists above and below 
the center of the plot, Y=0. This division is especially noticeable in the Bayesian and 
discriminant analysis gene lists and is due to the fact that these methods are univariate gene 
selection methods. The univariate methods rank and subsequently select genes as isolated 
variables, and hence obtain gene lists that are in some sense very redundant. In contrast, the 
NeuroFuzzy and SVM methods are multivariate and tend to select gene lists that are less 
redundant and hence not entirely determined by the first two principal components. 
 
It is evident from Figure 83 that the gene lists selected for the ALL/AML problem are related. 
Unfortunately, it is equally obvious that the gene lists selected for the remission/failure problem 
are unrelated, as shown using the same analysis in Figure 84. 
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Figure 84. Remission vs. Failure gene lists comparison. The gene lists that characterize 
remission versus failure are shown, with a different color for each of the methods used to 
obtain them. It can be seen in this figure that distinguishing remission from failure is a 
difficult task. 
 
When distinguishing infant ALL from infant AML we found that most of the list were co-
localized in our representative visualization (see Figures 80 and 83). When distinguishing 
remission from failure, on the other hand, we could not arrive at a satisfactory conclusion (see, 
Figures 81 and 84), which is also consistent with the way the gene lists show up in Figures 80, 
and 81, and is also consistent with the results from ANOVA plus bootstrapping (data not shown). 
 
At this point in the analysis it may seem that the biology has dissolved into a sea of numbers and 
statistical methods. However, these methods are our only guideposts when we begin reading the 
known information about the indicated genes. Without them we could easily waste very valuable 
time and people in the study of genes which are only weakly, if at all, related to the central 
questions of the research. Guided by these methods, we can approach the literature with greater 
confidence and are much more likely to see the important biology re-emerge in the gene 
annotations and the cited literature.  
 
However, even after these statistical filters, this literature is vast, and is not organized to make 
our searching particularly easy. We have come to recognize that this step (where very 
knowledgeable scientists must read, and read, and read even further) is the critical, rate limiting 
one for our research. As a result, we have begun a fruitful collaboration with the Natural 
Language Processing (NLP) community to build tools that find, summarize, and reorder 
important parts of the available online literature to make that reading process simpler, and more 
focused toward our research needs. In the following section we will present and discuss our 
preliminary automatic Genome Literature Exploration Environment. 
 
 

The gene list exploration environment (GLEE) 

 
A particularly important next step in the traditional exploratory analysis of microarray data is the 
literature review and study to learn everything that is known about these genes, especially with 
respect to disease and biological pathways. We collaborated with computational linguists to 
build a knowledge-mining tool, which we regularly use in our analysis. This first implementation 
of our Gene List Exploration Environment (GLEE program) has been able to speed up our 
searches through the text describing the genes identified by any of our approaches. A 
demonstration version of GLEE, together with user documentation, is available from the 
Computing Research Laboratory web site:  

http://aiaia.nmsu.edu/. 
The input to the system is a list of gene identifiers from Affymetrix translated by the program to 
the equivalent OMIM gene identifier (See Figure 85, and further details at the OMIM web site:  

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM. 
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As shown in Figure 86, the relevant OMIM text is retrieved and re-ordered to match the criteria 
that we use for evaluating genes. This automated retrieval and reordering also employs text 
summarization. We are presently in the process of extending GLEE to use a subset of the NCI 
Enterprise Vocabulary Services, EV, which is a first step toward a more knowledge-based tool 
that will be implemented with semantic networks. Because so much of our knowledge about the 
functions, localizations, and clinical impacts of genes is encoded in published literature, and 
because the effort to incorporate that knowledge is so labor and knowledge intensive, we believe 
the application of NLP to our specific needs is a critical, and a still largely missing tool for 
genomic and proteomic investigations.  

 

 

 

Figure 85. The Gene Literature Exploration Environment (GLEE) interface is configured as a web server, 
which handles document and query management, and a web browser that provides the user interface. 
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Figure 86. Output of the GLEE program. Summarized, and reordered annotations of a set of genes. Note 
that this is just the first page of annotations; further annotations are available by scrolling down in the 
browser. 
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Concluding remarks about the informatics methods 
 
Exciting preliminary gene expression profiling studies are providing new insights into molecular 
mechanism, and hold the promise of deeper biological understanding. However, the speed at 
which groups of genes generated by microarray analysis can be put together in pathways is one 
of the limiting steps in the translation of these discoveries to applications. 
 
The methods presented here can potentially be useful in uncovering groups of genes that serve to 
fingerprint biologically important subtypes that could aid further biological discoveries and in 
refining diagnosis and improving assessment of prognosis. Additionally, gene list comparison 
and exploration methods will increase the speed at which researchers can visualize and extract 
the more complex relationships encoded in gene expression data. 
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