29,978 research outputs found

    Quantum cryptography as a retrodiction problem

    Get PDF
    We propose a quantum key distribution protocol based on a quantum retrodiction protocol, known as the Mean King problem. The protocol uses a two way quantum channel. We show security against coherent attacks in a transmission error free scenario, even if Eve is allowed to attack both transmissions. This establishes a connection between retrodiction and key distribution.Comment: 5 pages, 1 figur

    Propagation and spectral properties of quantum walks in electric fields

    Get PDF
    We study one-dimensional quantum walks in a homogeneous electric field. The field is given by a phase which depends linearly on position and is applied after each step. The long time propagation properties of this system, such as revivals, ballistic expansion and Anderson localization, depend very sensitively on the value of the electric field Φ\Phi, e.g., on whether Φ/(2π)\Phi/(2\pi) is rational or irrational. We relate these properties to the continued fraction expansion of the field. When the field is given only with finite accuracy, the beginning of the expansion allows analogous conclusions about the behavior on finite time scales.Comment: 7 pages, 4 figure

    Quantum Walks with Non-Orthogonal Position States

    Get PDF
    Quantum walks have by now been realized in a large variety of different physical settings. In some of these, particularly with trapped ions, the walk is implemented in phase space, where the corresponding position states are not orthogonal. We develop a general description of such a quantum walk and show how to map it into a standard one with orthogonal states, thereby making available all the tools developed for the latter. This enables a variety of experiments, which can be implemented with smaller step sizes and more steps. Tuning the non-orthogonality allows for an easy preparation of extended states such as momentum eigenstates, which travel at a well-defined speed with low dispersion. We introduce a method to adjust their velocity by momentum shifts, which allows to investigate intriguing effects such as the analog of Bloch oscillations.Comment: 5 pages, 4 figure

    Origin and reduction of wakefields in photonic crystal accelerator cavities

    Full text link
    Photonic crystal (PhC) defect cavities that support an accelerating mode tend to trap unwanted higher-order modes (HOMs) corresponding to zero-group-velocity PhC lattice modes at the top of the bandgap. The effect is explained quite generally from photonic band and perturbation theoretical arguments. Transverse wakefields resulting from this effect are observed in a hybrid dielectric PhC accelerating cavity based on a triangular lattice of sapphire rods. These wakefields are, on average, an order of magnitude higher than those in the waveguide-damped Compact Linear Collider (CLIC) copper cavities. The avoidance of translational symmetry (and, thus, the bandgap concept) can dramatically improve HOM damping in PhC-based structures.Comment: 11 pages, 18 figures, 2 table

    Isophorcarubin

    Get PDF
    • …
    corecore