35,450 research outputs found
Magnitude Uncertainties Impact Seismic Rate Estimates, Forecasts and Predictability Experiments
The Collaboratory for the Study of Earthquake Predictability (CSEP) aims to
prospectively test time-dependent earthquake probability forecasts on their
consistency with observations. To compete, time-dependent seismicity models are
calibrated on earthquake catalog data. But catalogs contain much observational
uncertainty. We study the impact of magnitude uncertainties on rate estimates
in clustering models, on their forecasts and on their evaluation by CSEP's
consistency tests. First, we quantify magnitude uncertainties. We find that
magnitude uncertainty is more heavy-tailed than a Gaussian, such as a
double-sided exponential distribution, with scale parameter nu_c=0.1 - 0.3.
Second, we study the impact of such noise on the forecasts of a simple
clustering model which captures the main ingredients of popular short term
models. We prove that the deviations of noisy forecasts from an exact forecast
are power law distributed in the tail with exponent alpha=1/(a*nu_c), where a
is the exponent of the productivity law of aftershocks. We further prove that
the typical scale of the fluctuations remains sensitively dependent on the
specific catalog. Third, we study how noisy forecasts are evaluated in CSEP
consistency tests. Noisy forecasts are rejected more frequently than expected
for a given confidence limit. The Poisson assumption of the consistency tests
is inadequate for short-term forecast evaluations. To capture the
idiosyncrasies of each model together with any propagating uncertainties, the
forecasts need to specify the entire likelihood distribution of seismic rates.Comment: 35 pages, including 15 figures, agu styl
Comment on "Analysis of the Spatial Distribution between Successive Earthquakes" by Davidsen and Paczuski
By analyzing a southern California earthquake catalog, Davidsen and Paczuski
[Phys. Rev. Lett. 94, 048501 (2005)] claim to have found evidence contradicting
the theory of aftershock zone scaling in favor of scale-free statistics. We
present four elements showing that Davidsen and Paczuski's results may be
insensitive to the existence of physical length scales associated with
aftershock zones or mainshock rupture lengths, so that their claim is
unsubstantiated. (i) Their exponent smaller than 1 for a pdf implies that the
power law statistics they report is at best an intermediate asymptotic; (ii)
their power law is not robust to the removal of 6 months of data around Landers
earthquake within a period of 17 years; (iii) the same analysis for Japan and
northern California shows no evidence of robust power laws; (iv) a statistical
model of earthquake triggering that explicitely obeys aftershock zone scaling
can reproduce the observed histogram of Davidsen and Paczuski, demonstrating
that their statistic may not be sensitive to the presence of characteristic
scales associated with earthquake triggering
Quark-Gluon-Plasma Formation at SPS Energies?
By colliding ultrarelativistic ions, one achieves presently energy densities
close to the critical value, concerning the formation of a quark-gluon-plasma.
This indicates the importance of fluctuations and the necessity to go beyond
the investigation of average events. Therefore, we introduce a percolation
approach to model the final stage ( fm/c) of ion-ion collisions, the
initial stage being treated by well-established methods, based on strings and
Pomerons. The percolation approach amounts to finding high density domains, and
treating them as quark-matter droplets. In this way, we have a {\bf realistic,
microscopic, and Monte--Carlo based model which allows for the formation of
quark matter.} We find that even at SPS energies large quark-matter droplets
are formed -- at a low rate though. In other words: large quark-matter droplets
are formed due to geometrical fluctuation, but not in the average event.Comment: 7 Pages, HD-TVP-94-6 (1 uuencoded figure
Model atmospheres of X-ray bursting neutron stars
We present an extended set of model atmospheres and emergent spectra of X-ray
bursting neutron stars in low mass X-ray binaries. Compton scattering is taken
into account. The models were computed in LTE approximation for six different
chemical compositions: pure hydrogen and pure helium atmospheres, and
atmospheres with a solar mix of hydrogen and helium and various heavy elements
abundances: Z = 1, 0.3, 0.1, and 0.01 Z_sun, for three values of gravity, log g
=14.0, 14.3, and 14.6 and for 20 values of relative luminosity l = L/L_Edd in
the range 0.001 - 0.98. The emergent spectra of all models are fitted by
diluted blackbody spectra in the observed RXTE/PCA band 3 - 20 keV and the
corresponding values of color correction factors f_c are presented. We also
show how to use these dependencies to estimate the neutron star's basic
parameters.Comment: 2 pages, 1 figure, conference "Astrophysics of Neutron Stars - 2010"
in honor of M. Ali Alpar, Izmir, Turke
Correlative Capacity of Composite Quantum States
We characterize the optimal correlative capacity of entangled, separable, and
classically correlated states. Introducing the notions of the infimum and
supremum within majorization theory, we construct the least disordered
separable state compatible with a set of marginals. The maximum separable
correlation information supportable by the marginals of a multi-qubit pure
state is shown to be an LOCC monotone. The least disordered composite of a pair
of qubits is found for the above classes, with classically correlated states
defined as diagonal in the product of marginal bases.Comment: 4 pages, 1 figur
Semihard Interactions in Nuclear Collisions Based on a Unified Approach to High Energy Scattering
Our ultimate goal is the construction of a model for interactions of two
nuclei in the energy range between several tens of GeV up to several TeV per
nucleon in the centre-of-mass system. Such nuclear collisions are very complex,
being composed of many components, and therefore some strategy is needed to
construct a reliable model. The central point of our approach is the
hypothesis, that the behavior of high energy interactions is universal
(universality hypothesis). So, for example, the hadronization of partons in
nuclear interactions follows the same rules as the one in electron-positron
annihilation; the radiation of off-shell partons in nuclear collisions is based
on the same principles as the one in deep inelastic scattering. We construct a
model for nuclear interactions in a modular fashion. The individual modules,
based on the universality hypothesis, are identified as building blocks for
more elementary interactions (like e^+ e^-, lepton-proton), and can therefore
be studied in a much simpler context. With these building blocks under control,
we can provide a quite reliable model for nucleus-nucleus scattering, providing
in particular very useful tests for the complicated numerical procedures using
Monte Carlo techniques.Comment: 10 pages, no figures; Proc. of the ``Workshop on Nuclear Matter in
Different Phases and Transitions'', Les Houches, France, March 31 - April 10,
199
- …