34,427 research outputs found

    Quark-Gluon-Plasma Formation at SPS Energies?

    Get PDF
    By colliding ultrarelativistic ions, one achieves presently energy densities close to the critical value, concerning the formation of a quark-gluon-plasma. This indicates the importance of fluctuations and the necessity to go beyond the investigation of average events. Therefore, we introduce a percolation approach to model the final stage (Ď„>1\tau > 1 fm/c) of ion-ion collisions, the initial stage being treated by well-established methods, based on strings and Pomerons. The percolation approach amounts to finding high density domains, and treating them as quark-matter droplets. In this way, we have a {\bf realistic, microscopic, and Monte--Carlo based model which allows for the formation of quark matter.} We find that even at SPS energies large quark-matter droplets are formed -- at a low rate though. In other words: large quark-matter droplets are formed due to geometrical fluctuation, but not in the average event.Comment: 7 Pages, HD-TVP-94-6 (1 uuencoded figure

    Deposing the Cool Corona of KPD 0005+5106

    Full text link
    The ROSAT PSPC pulse height spectrum of the peculiar He-rich hot white dwarf KPD 0005+5106 provided a great surprise when first analysed by Fleming, Werner & Barstow (1993). It defied the best non-LTE modelling attempts in terms of photospheric emission from He-dominated atmospheres including C, N and O and was instead interpreted as the first evidence for a coronal plasma around a white dwarf. We show here that a recent high resolution Chandra LETGS spectrum has more structure than expected from a thermal bremsstrahlung continuum and lacks the narrow lines of H-like and He-like C expected from a coronal plasma. Moreover, a coronal model requires a total luminosity more than two orders of magnitude larger than that of the star itself. Instead, the observed 20-80 AA flux is consistent with photospheric models containing trace amounts of heavier elements such as Fe. The soft X-ray flux is highly sensitive to the adopted metal abundance and provides a metal abundance diagnostic. The weak X-ray emission at 1 keV announced by O'Dwyer et al (2003) instead cannot arise from the photosphere and requires alternative explanations. We echo earlier speculation that such emission arises in a shocked wind. Despite the presence of UV-optical O VIII lines from transitions between levels n=7-10, no X-ray O VIII Ly alpha flux is detected. We show that O VIII Lyman photons can be trapped by resonant scattering within the emitting plasma and destroyed by photoelectric absorption.Comment: 15 Pages, 4 figures. Accepted for the Astrophysical Journa

    Disaggregated Credit Flows and Growth in Central Europe

    Get PDF
    The aim of this paper is to explore the link between credit and output in the context of a developed transition economy. Salient credit market features of these economies are (i) credit market imperfections leading to constraints on growth and (ii) the rapidly growing importance during transition of their financial sectors (the insurance, pension funds and real estate sectors). We develop a framework of credit and output including separate measures for credit to the real sector and financial sectors and for credit constraints, taking account of the role of trade credit. In our empirical work we focus on the Czech Republic because of the level of its financial development and data quality. In VAR and ARIMA analyses we find that our disaggregated measures for credit flows are better predictors of nominal growth than traditional, aggregate measures.Credit, growth, transition, central Europe, Czech Republic

    Chandra and FUSE spectroscopy of the hot bare stellar core H1504+65

    Full text link
    H1504+65 is an extremely hot hydrogen-deficient white dwarf with an effective temperature close to 200,000 K. We present new FUV and soft X-ray spectra obtained with FUSE and Chandra, which confirm that H1504+65 has an atmosphere primarily composed of carbon and oxygen. The Chandra LETG spectrum (60-160 Angstroem) shows a wealth of photospheric absorption lines from highly ionized oxygen, neon, and - for the first time identified in this star - magnesium and suggests relatively high Ne and Mg abundances. This corroborates an earlier suggestion that H1504+65 represents a naked C/O stellar core or even the C/O envelope of an O-Ne-Mg white dwarf.Comment: 15 pages, 10 figures, accepted for publication in A&
    • …
    corecore