405 research outputs found

    Quantum Effects in Black Hole Interiors

    Get PDF
    The Weyl curvature inside a black hole formed in a generic collapse grows, classically without bound, near to the inner horizon, due to partial absorption and blueshifting of the radiative tail of the collapse. Using a spherical model, we examine how this growth is modified by quantum effects of conformally coupled massless fields.Comment: 13 pages, 1 figure (not included), RevTe

    A Class of Stationary Electromagnetic Vacuum Fields

    Get PDF
    This is the published version, also available here: http://dx.doi.org/10.1063/1.1666066.It is shown how a new class of stationary electromagnetic vacuum fields can be generated from solutions of Laplace's equation. These fields are a stationary generalization of the static electromagnetic vacuum fields of Weyl, Majumdar, and Papapetrou, and are plausibly interpreted as exterior fields of static or steadily moving distributions of charged dust having numerically equal charge and mass densities

    Quasi-Spherical Light Cones of the Kerr Geometry

    Get PDF
    Quasi-spherical light cones are lightlike hypersurfaces of the Kerr geometry that are asymptotic to Minkowski light cones at infinity. We develop the equations of these surfaces and examine their properties. In particular, we show that they are free of caustics for all positive values of the Kerr radial coordinate r. Useful applications include the propagation of high-frequency waves, the definition of Kruskal-like coordinates for a spinning black hole and the characteristic initial-value problem.Comment: LaTeX, 14 pages, 2 figure

    Band-aid for information loss from black holes

    Full text link
    We summarize, simplify and extend recent work showing that small deviations from exact thermality in Hawking radiation, first uncovered by Kraus and Wilczek, have the capacity to carry off the maximum information content of a black hole. This goes a considerable way toward resolving a long-standing "information-loss paradox"

    A reach-out system for video microscopy analysis of ciliary motions aiding PCD diagnosis

    Get PDF
    Backgrounds High-speed Video-Microscopy Analysis (HVMA) is now being used to aid diagnosis of Primary Ciliary Dyskinesia (PCD). Only a few centers however, are equipped with the available resources and equipment to perform these tests. We describe our experience in HVMA reaching-out to many more peripheral and relatively remote areas. A portable computer with HVMA software, video camera and a microscope were used. Fourteen disperse pediatric centers were reached and a total of 203 subjects were tested within a relatively short time (Clinical Trial Registration: NCT 01070914 (registered February 6, 2010). Results With an average time of 20 minutes per patient, the system enabled us to test approximately 10–15 subjects per day. A valid HVMA result was made in 148 subjects and helped in the diagnosis of PCD in many of the patients who were subsequently confirmed to have PCD by electron microscopy and/or immunofluoresence and/or genetics and/or nasal Nitric Oxide testing. The sensitivity of abnormal HVMA to accurately predict PCD was 90.2%. Discussion and conclusion This is the first report of an out-reach system to record HVMA for improved diagnosis of PCD in remote regions that are not within reach of PCD centers and experts. It provides immediate preliminary results and instantaneous feedback to the physician, patient and his/her family members in these areas. Future studies to compare this system to conventional desk top systems are warranted

    Discovery of a 500 pc shell in the nucleus of Centaurus A

    Full text link
    Spitzer Space Telescope mid-infrared images of the radio galaxy Centaurus A reveal a shell-like, bipolar, structure 500 pc to the north and south of the nucleus. This shell is seen in 5.8, 8.0 and 24 micron broad-band images. Such a remarkable shell has not been previously detected in a radio galaxy and is the first extragalactic nuclear shell detected at mid-infrared wavelengths. We estimate that the shell is a few million years old and has a mass of order million solar masses. A conservative estimate for the mechanical energy in the wind driven bubble is 10^53 erg. The shell could have created by a small few thousand solar mass nuclear burst of star formation. Alternatively, the bolometric luminosity of the active nucleus is sufficiently large that it could power the shell. Constraints on the shell's velocity are lacking. However, if the shell is moving at 1000 km/s then the required mechanical energy would be 100 times larger.Comment: submitted to ApJ Letter

    Gravitational field of relativistic gyratons

    Full text link
    The metric ansatz is used to describe the gravitational field of a beam-pulse of spinning radiation (gyraton) in an arbitrary number of spacetime dimensions D. First we demonstrate that this metric belongs to the class of metrics for which all scalar invariants constructed from the curvature and its covariant derivatives vanish. Next, it is shown that the vacuum Einstein equations reduce to two linear problems in (D-2)-dimensional Euclidean space. The first is to find the static magnetic potential created by a point-like source. The second requires finding the electric potential created by a point-like source surrounded by given distribution of the electric charge. To obtain a generic gyraton-type solution of the vacuum Einstein equations it is sufficient to allow the coefficients in the corresponding harmonic decompositions of solutions of the linear problems to depend arbitrarily on retarded time and substitute the obtained expressions in the metric ansatz. We discuss properties of the solutions for relativistic gyratons and consider special examples.Comment: 11 page
    • …
    corecore