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LOCAL EXISTENCE OF SOLUTIONS 865 

given in terms of the field at the origin point P. Thus, 
we can calculate r;k(R)[and by similar arguments 
gij (R)] provided a consistent set of qk exists at P. A 
consistent set of r; k at P must satisfy the require
ment that the mixed derivatives6 of all functions of 
q k and gJj be symmetric. These relations are just 
given by t;qs. (8) and (9). Thus, we conclude that 
local existence depends on being able to obtain solu-

1 M. Muraskin, Ann. Phys. (N .Y.) 59,27 (1970). This reference 
gives background material for the present paper. 

2 We shall make a few comments about the r;k = rikJ situation. 
For symmetric r i k' we can make a general coordinate trans
formation so that Jrik '" 0 at the origin. Then it might appear that 
r i

k
", 0 at all point~ as a consequence of (1) and, thus, no non

tr'ivial solutions would be possible for symmetric r;k' However, 
this argument is not correct since Eq. (1) is not covariant under 
general coordinate transformations. Thus, the transformation 
that leads to r;k = 0 at the origin also implies r;k; I ,,< O. 

3 See Sec. II for detailed discussion. 

tions to (8) and (9) which, in fact, we have already 
found. A solution to (8) and (9) is given by (10),(11), 
and (12). 

3. CONCLUSION 
Thus,nontrivial solutions to (1) and (2) with R.ijkl ;;t 0 
exist locally. Further investigations of the qk; I = 0, 
gij;k = 0 field theory appear elsewhere. 7 

4 R 1 230 = - R 1203 is nonzero. 
5 T. Apostol, Mathematical Analysis (Addison-Wesley, Reading, 

Mass., 1957),pp. 96,123. 
6 The problem of consistency when the field depends on a number 

of parameters as well as x, y, z, xO is discussed in L. Eisenhart, 
Continuous Groups of Transformation (Dover, New York, 1961), 
Chap. 1. 

7 M.Muraskin and T.Clark,Ann.Phys.(N.Y.) 59,27 (1970). 
M. Muraskin,J. Math. Phys.12, 28 (1971); Intern. J. Theoret. 
Phys. 4, 49 (1971). 
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It is shown how a new class of stationary electromagnetic vacuum fields can be generated from solutions of 
Laplace's equation. These fields are a stationary generalization of the static electromagnetiC vacuum fields 
of Weyl, Majumdar, and Papapetrou, and are plausibly interpreted as exterior fields of static or steadily mov
ing distributions of charged dust having numerically equal charge and mass densities. 

1. INTRODUCTION 

Coulomb's law and Newton's law of gravity are for
mally identical apart from a Sign. Hence, claSSically, 
any unstressed distribution of matter can, if suitably 
charged, be maintained in neutral equilibrium under 
a balance between the gravitational attraction and 
electrical repulsion of its parts. 

Indications that this obvious Newtonian fact has a 
relativistic analog first emerged when Weyll obtained 
a particular class of static electromagnetic vacuum 
fields, later generalized by Majumdar2 and Papape
trou3 to remove Weyl's original restriction to axial 
symmetry, and further studied by Bonnor4 and 
Synge. s The Papapetrou-Majumdar fields are to all 
appearances the external fields of static sources 
whose charge and mass are numerically equal (in 
relativistic units: G = c = 1). That they are indeed 
interpretable as external fields of static distributions 
of charged dust having equal charge and mass densi
ties has been shown by Das,6 who has examined the 
.corresponding interior fields. 

Astrophysical bodies are electrically neutral to a 
good approximation, and the Papapetrou-Majumdar 
solutions have up to now received little attention. It 
seems to us, however, that they can playa useful, if 
limited, astrophysical role in providing simple qua
sistatic analogues for complex dynamical processes 
like the disappearance of asymmetries in gravita
tional collapse or the collision of black holes. In 
reality, such a process always involves large kinetic 

energies and at present can only be handled by elabo
rate numerical integrations under the assumption of 
small departures from spherical symmetry. 7,8 How
ever, for charged bodies in neutral equilibrium the 
process can be made arbitrarily slow, and the details 
easily followed as a sequence of stationary configura
tions. While this procedure prevents us from con
sidering features of undeniable observational impor
tance, such as the emission of gravitational waves, it 
is for that very reason ideally suited for isolating and 
elucidating certain basic issues of prinCiple relating 
to the final phases of the process. 

Some of these questions are pursued in detail else
where. 9 Our purpose here is to demonstrate that the 
Papapetrou-Majumdar class can be extended straight
forwardly from the static to the stationary realm. 

2. STATIONARY FIELDS 

The metric of an arbitrary stationary field is con
veniently expressed in the form lO 

ds 2 = g""dxJ1.d,x" = - f-ly mn dxmdxn 

+ I(wmdx m + d,x4)2, (1) 

in which I, Y mn , and W m are independent of the time 
coordinate X4. The inverse of gllIJ is given by 

gil" ~ _0_ = _ Iymn _0 __ 0_ + 21w m _0 __ 0_ 
OXIl ox" ox m oxn ox m ox 4 

02 
+ (f-l-Iw 2 ) (ox 4 )2' (2) 

J. Math. Phys., Vol. 13, No.6, June 1972 
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where ymn is the 3 x 3 symmetric matrix inverse to 
Y mn , w m = ymnwn and w2 = ymnwmwn . The determi
nants of gil V and Ymn are related by 

(3) 

The 3-vector wm in (1) is arbitrary up to an additive 
gradient am.\(xl,x2,x3), corresponding to the possi
bility of making arbitrary time translations x4 -7 x4' = 
x4 - .\(x"1,x2,X3). However, we can derive from it an 
invariant "torsion vector" 

in terms of a three-dimensional vector calculus em
ploying Ymndxmdxn as base metric. 

We next consider a stationary electromagnetic field 
FjlV = avAjl- ajlAy in the space-time (1). The condi
tion of time independence a4AIl = 0 yields for the 
"electric" components 

(5) 

while the source-free Maxwell equations 

( 6) 

for fJ. = m give the" magnetic" components 

(7) 

in terms of a magnetic scalar potential <1>. All remain
ing components are then conveniently expressed in 
terms of these six; for example, 

(4) Fn4= wm (4) Fmn + F4 m ymn, ( 8) 

an identity which follows readily from (1) or (2). 
Equation (6) with jJ. = 4 now yields, on substituting (8), 
(7), (5) and (4), 

(9) 

Next, writing F mn (= anAm - amAn) in terms of (5) and 
(7) and expressing the cyclic identity Emnp apF mn = 0, 
we obtain 

(10) 

If we now introducell the complex scalar potential 

\}J = A4 + i<l>, 

then (9) and (10) combine to give 

div (f-1 '\7\}J) = i 1-2 T· 'i7-.J! . 

We have thus reduced the entire set of Maxwell's 
equations to the single complex equation (12). 

3. GRAVITATIONAL FIELD EQUATIONS 

The Ricci tensor 

(11) 

(12) 

for the general stationary metric (1) is conveniently 
expressed in terms of a complex 3-vector G, defined 
by 

J. Math. Phys., Vol. 13, No.6, June 1972 

2/G = 'i7/ + iT. (13) 

Then12 

_/-2 R44 = div G + (G* - G)' G, (14a) 

- 2i/-2 (4)R'4 = y-1/2 Empq(aqCp + CpC;), (15a) 

/-2(YpmYqn (4)Rmn_ YJqR 44 )== Rpq(Y) + CpC; + C;Cq• 

(16a) 
Here, RJq (y ) denotes the Ricci tensor formed from the 
3-metric Ymndx mdxn• 

For the electromagnetic energy tensor 

one derives from the formulas of the previous sec
tion 

~FjlvFIlV == ('i7<1»2 - ('i7A 4)2, 

81T/-1 T 44 = ('i7<1»2 + ('i7A4)2, (14b) 

41T /-1 (4)TJ{' == y-1I2 Empq(ap<l>)(aqA 4 ), (15b) 

- 4n /-1 (4)Tmn = (amq,)(anq,) + (amA4)(anA4) 

- i ymn[('i7<1»2 + ('i7A4)2] (16b) 

with am = ymn an' 

We can now impose the Einstein field equations 
R/lV == - 8n Tjlv' From (15a), (15b), we find 

curl T = - 4'V<I> X 'VA 4 

= i cur1(\}J'V\}J* - \jJ"*'V\}J), 

so that the equation 

T + i(\}J*'i71J1 - ~*) = 'Vl/I (17) 

defines a real scalar l/I up to an additive constant. 

We next define a complex function ll 

8 == / - \}JIJI* + il/l. 

By virtue of (13) and (17), 

/G = i 'i7 8 + 1JI*'i7IJ1. 

(18) 

(19) 

Substituting (19) into the field equations (14a), (14b) 
and employing (12) leads toll 

while (12) itself can be written 

and we note from (18) that 

/ = 1 (8 + 8*) + \}J\}J* . 

(20) 

(21 ) 

(22) 

Finally the field equations (16a), (16b) reduce to 

-J2Rmn (y) == i 8 (,,,8~n) + \}J8.lm\}J~n) + \}J* 8~(m-.J! .n) 

- (8 + 8*)\}J.(m-.J!~n)' (23) 

in which, for example, 
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STATIONARY ELECTROMAGNETIC VACUUM FIELDS 867 

The complete system of electromagnetic and gravita
tional field equations for an arbitrary electromagne
tic vacuum field are summed up in (20), (21), and (23). 

4. GENERALIZED PAPAPETROU-MAJUMDAR 
SOLUTIONS 

So far, our considerations have been quite general. 
We now examine whether solutions of the system (20), 
(21), and (23) exist for which the background metric 
Ymndxmdxn isflat. In this case equations (23) [with 
Rmn (y) = 0] are satisfied if and only if there is a 
linear relation 

>II = a + b&, with a* b + ab* = - i 

(as one easily verifies, for example, by choosing 
8 = xl and 8* = x 2 as coordinates). Both 8 and >II 
contain arbitrary additive constants, and it is con
venient to adjust these so that 8 --) 1 when >II --) O. We 
thus obtain 

>II = i e ia (l_ 8), (24) 

in which the arbitrary real constant Q' represents the 
"complexion" of the electromagnetic field. We can 
submit this field to any constant duality rotation with
out affecting the geometry. 

If we now substitute (24) into (20) and (21), both reduce 
to 

(25) 

which is Laplace's equation in Euclidean 3-space. 

We conclude by summarizing the procedure for ob
taining the complete field. (a) Write down a solution 
of (25) in terms of any convenient coordinates xm. 
Suppose the Euclidean line element takes the form 
Ymndxmdxn in these coordinates. (b) Obtainj, T, and 
w from the equations 

j = {(I + 8)(1 + 8*), 

ij-l T = V{ln[(1 + 8)/ (1 + 8*)]}, cur I w = - r 2 T. 

The space-time metric is given by (1). (c) Obtain 
'l< = A4 + i<I> from (24). The electromagnetic field 
can be found from (5) and (7). 

* Work partially supported by the National Research 
Council of Canada. 
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5. EXAMPLE: CHARGED KERR-LIKE SOLUTIONS 

The Kerr-Newman solution with m 2 = e 2 corresponds 
to the simplest complex solution of (25). We choose 

2/(1 + 8)::::: 1 + m/R, with R2 =x2 + y2 + (z - ia)2, 
(27) 

where a and m are real constants and x, y, z Cartesian 
coordinates. In terms of oblate spheroidal coordi
nates r, e, cj> defined by 

x + iy ::::: [(r- m)2 + a2)1/2 sine ei¢,z =(r-m) case, 

the Euclidean 3-metric becomes 

ymndxmdxn = [(r-m)2 + a2 cos2e]{dr2/[(r-m)2+ a2] 

+ de 2}+ [(r- m)2 + a2] sin2edcj>2. 

Further, we find 

R = r - m - i a cose, 

j = [(r - m)2+ a2 cos2ell(r2 + a2 cos2e), 

>II = eia m/ (r- i a cose), 

and, after a somewhat lengthy calculation, 

wmdx m = {[(2mr-m2)a sin2 e]![(r -m)2 

+ a2 cos2 e]} dcj>. 

Putting everything together, we recover the charged 
Kerr metric with m2 = e2 in its usual form.13 

As a natural generalization of (27), one may consider 
2 n m 

--=1+.6 _k, 
1 + 8 k~l Rk 

where Rl = (r - c k)2, r is the Euclidean pOSition vec
tor, and c

k 
an arbitrary set of constant, complex vec

tors. The resulting metric will represent the field of 
a set of arbitrarily spinning, charged Kerr-like par
ticles in neutral equilibrium. For the static analog of 
this solution, representing a set of Reissner-Nord
strom particles with e k = m k ; see Ref. 5. 

Note added in proof: The stationary extension of 
the Papapetrou-Majumdar solutions has since been 
obtained independently by Z. PerjE~s, Phys. Rev. Letters 
2'7,1668 (1971). 

10 Greek indices run from 1 to 4, Latin indices from 1 to 3. Lower
ing and raising of Latin indices is always carried out with y mn 

and its inverse y mn unless specifically noted by a left super
script 4. Thus, if F~" is a given covariant tensor, we write 
Fab =yamybnFmn and (4)FQb =ga~gb"F~". 

11 Cf., for the special case of axial symmetry, F. J. Ernst, Phys. 
Rev. 168, 1415 (1968), where the idea of a complex potential is 
first introduced. We have been informed that B. K. Harrison 
(1968, unpublished) has cast the stationary electromagnetic 
vacuum equations into a form similar to that given in Sees. 2 
and 3. See also B.K.Harrison,J.Math.Phys.9,1744 (1968). A 
recent publication by Ernst, J. Math. Phys.12, 2395 (1971) treats 
the general stationary vacuum case. 

12 Z. Perjes, J. Math. Phys.ll, 3383 (1970). 
13 See, e.g., B.Carter, Phys.Rev.174,1559 (1968). 
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