28 research outputs found
siRNA–Mediated Methylation of Arabidopsis Telomeres
Chromosome termini form a specialized type of heterochromatin that is important for chromosome stability. The recent discovery of telomeric RNA transcripts in yeast and vertebrates raised the question of whether RNA–based mechanisms are involved in the formation of telomeric heterochromatin. In this study, we performed detailed analysis of chromatin structure and RNA transcription at chromosome termini in Arabidopsis. Arabidopsis telomeres display features of intermediate heterochromatin that does not extensively spread to subtelomeric regions which encode transcriptionally active genes. We also found telomeric repeat–containing transcripts arising from telomeres and centromeric loci, a portion of which are processed into small interfering RNAs. These telomeric siRNAs contribute to the maintenance of telomeric chromatin through promoting methylation of asymmetric cytosines in telomeric (CCCTAAA)n repeats. The formation of telomeric siRNAs and methylation of telomeres relies on the RNA–dependent DNA methylation pathway. The loss of telomeric DNA methylation in rdr2 mutants is accompanied by only a modest effect on histone heterochromatic marks, indicating that maintenance of telomeric heterochromatin in Arabidopsis is reinforced by several independent mechanisms. In conclusion, this study provides evidence for an siRNA–directed mechanism of chromatin maintenance at telomeres in Arabidopsis
Transgenerational epigenetic inheritance in plants
Interest in transgenerational epigenetic inheritance has intensified with the boosting of knowledge on epigenetic mechanisms regulating gene expression during development and in response to internal and external signals such as biotic and abiotic stresses. Starting with an historical background of scantily documented anecdotes and their consequences, we recapitulate the information gathered during the last 60 years on naturally occurring and induced epialleles and paramutations in plants. We present the major players of epigenetic regulation and their importance in controlling stress responses. The effect of diverse stressors on the epigenetic status and its transgenerational inheritance is summarized from a mechanistic viewpoint. The consequences of transgenerational epigenetic inheritance are presented, focusing on the knowledge about its stability, and in relation to genetically fixed mutations, recombination, and genomic rearrangement. We conclude with an outlook on the importance of transgenerational inheritance for adaptation to changing environments and for practical applications. This article is part of a Special Issue entitled “Epigenetic control of cellular and developmental processes in plants”
The RdDM Pathway Is Required for Basal Heat Tolerance in Arabidopsis
Heat stress affects epigenetic gene silencing in Arabidopsis. To test for a mechanistic involvement of epigenetic regulation in heat-stress responses, we analyzed the heat tolerance of mutants defective in DNA methylation, histone modifications, chromatin-remodeling, or siRNA-based silencing pathways. Plants deficient in NRPD2, the common second-largest subunit of RNA polymerases IV and V, and in the Rpd3-type histone deacetylase HDA6 were hypersensitive to heat exposure. Microarray analysis demonstrated that NRPD2 and HDA6 have independent roles in transcriptional reprogramming in response to temperature stress. The misexpression of protein-coding genes in nrpd2 mutants recovering from heat correlated with defective epigenetic regulation of adjacent transposon remnants which involved the loss of control of heat-stress-induced read-through transcription. We provide evidence that the transcriptional response to temperature stress, at least partially, relies on the integrity of the RNA-dependent DNA methylation pathway
HDA6, a putative histone deacetylase needed to enhance DNA methylation induced by double-stranded RNA
To analyze relationships between RNA signals, DNA methylation and chromatin modifications, we performed a genetic screen to recover Arabidopsis mutants defective in RNA-directed transcriptional silencing and methylation of a nopaline synthase promoter–neomycinphosphotransferase II (NOSpro– NPTII) target gene. Mutants were identified by screening for recovery of kanamycin resistance in the presence of an unlinked silencing complex encoding NOSpro double-stranded RNA. One mutant, rts1 (RNA-mediated transcriptional silencing), displayed moderate recovery of NPTII gene expression and partial loss of methylation in the target NOSpro, predominantly at symmetrical C(N)Gs. The RTS1 gene was isolated by positional cloning and found to encode a putative histone deacetylase, HDA6. The more substantial decrease in methylation of symmetrical compared with asymmetrical cytosines in rts1 mutants suggests that HDA6 is dispensable for RNA-directed de novo methylation, which results in intermediate methylation of cytosines in all sequence contexts, but is necessary for reinforcing primarily C(N)G methylation induced by RNA. Because CG methylation in centromeric and rDNA repeats was not reduced in rts1 mutants, HDA6 might be specialized for the RNA- directed pathway of genome modification
Involvement of Putative SNF2 Chromatin Remodeling Protein DRD1 in RNA-Directed DNA Methylation
AbstractIn plants, the mechanism by which RNA can induce de novo cytosine methylation of homologous DNA is poorly understood. Cytosines in all sequence contexts become modified in response to RNA signals [1, 2]. Recent work has implicated the de novo DNA methyltransferases (DMTases), DRM1 and DRM2, in establishing RNA-directed methylation of the constitutive nopaline synthase promoter [3], as well as the DMTase MET1 [4] and the putative histone deacetylase HDA6 [5] in maintaining or enhancing CpG methylation induced by RNA. Despite the identification of enzymes that catalyze epigenetic modifications in response to RNA signals, it is unclear how RNA targets DNA for methylation. A screen for mutants defective in RNA-directed DNA methylation identified a novel putative chromatin-remodeling protein, DRD1. This protein belongs to a previously undefined, plant-specific subfamily of SWI2/SNF2-like proteins most similar to the RAD54/ATRX subfamily. In drd1 mutants, RNA-induced non-CpG methylation is almost eliminated at a target promoter, resulting in reactivation, whereas methylation of centromeric and rDNA repeats is unaffected. Thus, unlike the SNF2-like proteins DDM1/Lsh1 [6, 7] and ATRX [8, 9], which regulate methylation of repetitive sequences, DRD1 is not a global regulator of cytosine methylation. DRD1 is the first SNF2-like protein implicated in an RNA-guided, epigenetic modification of the genome
Involvement of Putative SNF2 Chromatin Remodeling Protein DRD1 in RNA-Directed DNA Methylation
A SNF2-like protein facilitates dynamic control of DNA methylation
DRD1 is a SNF2-like protein previously identified in a screen for mutants defective in RNA-directed DNA methylation of a seed promoter in Arabidopsis. Although the initial study established a role for DRD1 in RNA-directed DNA methylation, it did not address whether DRD1 is needed for de novo or maintenance methylation, or whether it is required for methylation of other target sequences. We show here that DRD1 is essential for RNA-directed de novo methylation and acts on different target promoters. In addition, an unanticipated role for DRD1 in erasure of CG methylation was shown when investigating maintenance methylation after segregating away the silencing trigger. DRD1 is unique among known SNF2-like proteins in facilitating not only de novo methylation of target sequences in response to RNA signals, but also loss of methylation when the silencing inducer is withdrawn. The opposing roles of DRD1 could contribute to the dynamic regulation of DNA methylation
Endogenous pararetroviruses of allotetraploid Nicotiana tabacum and its diploid progenitors, N. sylvestris and N. tomentosiformis
Role of the DRM and CMT3 Methyltransferases in RNA-Directed DNA Methylation
AbstractRNA interference is a conserved process in which double-stranded RNA is processed into 21–25 nucleotide siRNAs that trigger posttranscriptional gene silencing. In addition, plants display a phenomenon termed RNA-directed DNA methylation (RdDM) in which DNA with sequence identity to silenced RNA is de novo methylated at its cytosine residues. This methylation is not only at canonical CpG sites but also at cytosines in CpNpG and asymmetric sequence contexts. In this report, we study the role of the DRM and CMT3 DNA methyltransferase genes in the initiation and maintenance of RdDM. Neither drm nor cmt3 mutants affected the maintenance of preestablished RNA-directed CpG methylation. However, drm mutants showed a nearly complete loss of asymmetric methylation and a partial loss of CpNpG methylation. The remaining asymmetric and CpNpG methylation was dependent on the activity of CMT3, showing that DRM and CMT3 act redundantly to maintain non-CpG methylation. These DNA methyltransferases appear to act downstream of siRNAs, since drm1 drm2 cmt3 triple mutants show a lack of non-CpG methylation but elevated levels of siRNAs. Finally, we demonstrate that DRM activity is required for the initial establishment of RdDM in all sequence contexts including CpG, CpNpG, and asymmetric sites
