2,533 research outputs found
Ontology and medical terminology: Why description logics are not enough
Ontology is currently perceived as the solution of first resort for all problems related to biomedical terminology, and the use of description logics is seen as a minimal requirement on adequate ontology-based systems. Contrary to common conceptions, however, description logics alone are not able to prevent incorrect representations; this is because they do not come with a theory indicating what is computed by using them, just as classical arithmetic does not tell us anything about the entities that are added or subtracted. In this paper we shall show that ontology is indeed an essential part of any solution to the problems of medical terminology – but only if it is understood in the right sort of way. Ontological engineering, we shall argue, should in every case go hand in hand with a sound ontological theory
Controlling Costs to Improve Profit Potential
Jim and Ann Werner Registered Angus is a family operation. Both Jim and Ann grew up on farms and are fortunate that their four children and their families are all part of the business
Effects of Concurrent Selection for Residual Feed Intake and Average Daily Gain on Fertility and Longevity in Black Angus Beef Females
Data from this analysis suggest that concurrent selection for both average daily gain and residual feed intake (RFI) may identify beef heifers that have improved fertility and longevity without impacting growth and maternal EPDs. As the beef industry continues to focus on sustainability, and thus efficiency, identification of commercial breeding stock that fit this mold will be imperative
Identification of possible cow grazing behaviour indicators for restricted grass availability in a pasture-based spring calving dairy system
peer-reviewedPrecision livestock farming uses biosensors to measure different parameters of individual animals to support farmers in the decision making process. Although sensor development is advanced, there is still little implementation of sensor-based solutions on commercial farms. Especially on pasture-based dairy systems, the grazing management of cows is largely not supported by technology. A key factor in pasture-based milk production is the correct grass allocation to maximize the grass utilization per cow, while optimizing cow performance. Currently, grass allocation is mostly based on subjective eye measurements or calculations per herd. The aim of this study was to identify possible indicators of insufficient or sufficient grass allocation in the cow grazing behaviour measures. A total number of 30 cows were allocated a restricted pasture allowance of 60% of their intake capacity. Their behavioural characteristics were compared to those of 10 cows (control group) with pasture allowance of 100% of their intake capacity. Grazing behaviour and activity of cows were measured using the RumiWatchSystem for a complete experimental period of 10 weeks. The results demonstrated that the parameter of bite frequency was significantly different between the restricted and the control groups. There were also consistent differences observed between the groups for rumination time per day, rumination chews per bolus and frequency of cows standing or lying
A Double Layered Water Cherenkov Detector Array for Gamma-Ray Astronomy
Ground-level particle detection is now a well-established approach to TeV
gamma-ray astronomy. Detection of Cherenkov light produced in water-filled
detection units is a proven and cost-effective method. Here we discuss the
optimization of the units towards the future Southern Wide-field Gamma-ray
Observatory (SWGO). In this context, we investigate a new type of configuration
in which each water Cherenkov detector (WCD) unit in the array comprises two
chambers with black or reflective walls and a single photomultiplier tube (PMT)
in each chamber. We find that this is a cost-effective approach that improves
the performance of the WCD array with respect to current approaches. A shallow
lower chamber with a PMT facing downwards enables muon tagging and the
identification of hadron-induced air showers, which are the primary source of
background in gamma-ray astronomy. We investigate how gamma/hadron separation
power and achievable angular resolution depend on the geometry and wall
reflectivity of the detector units in this configuration. We find that
excellent angular resolution, background rejection power and low-energy
response are achievable in this double-layer configuration, with the aid of
reflective surfaces in both chambers.Comment: 17 pages, 20 figure
Recommended from our members
Analysis of wheat SAGE tags reveals evidence for widespread antisense transcription
BACKGROUND: Serial Analysis of Gene Expression (SAGE) is a powerful tool for genome-wide transcription studies. Unlike microarrays, it has the ability to detect novel forms of RNA such as alternatively spliced and antisense transcripts, without the need for prior knowledge of their existence. One limitation of using SAGE on an organism with a complex genome and lacking detailed sequence information, such as the hexaploid bread wheat Triticum aestivum, is accurate annotation of the tags generated. Without accurate annotation it is impossible to fully understand the dynamic processes involved in such complex polyploid organisms. Hence we have developed and utilised novel procedures to characterise, in detail, SAGE tags generated from the whole grain transcriptome of hexaploid wheat. RESULTS: Examination of 71,930 Long SAGE tags generated from six libraries derived from two wheat genotypes grown under two different conditions suggested that SAGE is a reliable and reproducible technique for use in studying the hexaploid wheat transcriptome. However, our results also showed that in poorly annotated and/or poorly sequenced genomes, such as hexaploid wheat, considerably more information can be extracted from SAGE data by carrying out a systematic analysis of both perfect and "fuzzy" (partially matched) tags. This detailed analysis of the SAGE data shows first that while there is evidence of alternative polyadenylation this appears to occur exclusively within the 3' untranslated regions. Secondly, we found no strong evidence for widespread alternative splicing in the developing wheat grain transcriptome. However, analysis of our SAGE data shows that antisense transcripts are probably widespread within the transcriptome and appear to be derived from numerous locations within the genome. Examination of antisense transcripts showing sequence similarity to the Puroindoline a and Puroindoline b genes suggests that such antisense transcripts might have a role in the regulation of gene expression. CONCLUSION: Our results indicate that the detailed analysis of transcriptome data, such as SAGE tags, is essential to understand fully the factors that regulate gene expression and that such analysis of the wheat grain transcriptome reveals that antisense transcripts maybe widespread and hence probably play a significant role in the regulation of gene expression during grain development
Investigation of the effect of residual stresses in the subsurface on process forces for consecutive orthogonal cuts
The quality and surface integrity of machined parts is influenced by residual stresses in the subsurface resulting from cutting operations. These stress characteristics can not only affect functional properties such as fatigue life, but also the process forces during machining. Especially for orthogonal cutting as an appropriate experimental analogy setup for machining operations like milling, different undeformed chip thicknesses cause specific residual stress formations in the subsurface area. In this work, the process-related depth profile of the residual stress in AISI 4140 was investigated and correlated to the resulting cutting forces. Furthermore, an analysis of the microstructure of the cut material was performed, using additional characterization techniques such as electron backscatter diffraction and nanoindentation to account for subsurface alterations. On this basis, the influence of process-related stress profiles on the process forces for consecutive orthogonal cutting strategies is evaluated and compared to the results of a numerical model. The insights obtained provide a basis for future investigations on, e. g., empirical modeling of process forces including the influence of process-specific characteristics such as residual stress
Recommended from our members
Feasibility of Ground Testing a Moon and Mars Surface Power Reactor in EBR-II
Ground testing of a surface fission power system would be necessary to verify the design and validate reactor performance to support safe and sustained human exploration of the Moon and Mars. The Idaho National Laboratory (INL) has several facilities that could be adapted to support a ground test. This paper focuses on the feasibility of ground testing at the Experimental Breeder Reactor II (EBR-II) facility and using other INL existing infrastructure to support such a test. This brief study concludes that the INL EBR-II facility and supporting infrastructure are a viable option for ground testing the surface power system. It provides features and attributes that offer advantages to locating and performing ground testing at this site, and it could support the National Aeronautics and Space Administration schedules for human exploration of the Moon. This study used the initial concept examined by the U.S. Department of Energy Inter-laboratory Design and Analysis Support Team for surface power, a lowtemperature, liquid-metal, three-loop Brayton power system. With some facility modification, the EBR-II can safely house a test chamber and perform long-term testing of the space reactor power system. The INL infrastructure is available to receive and provide bonded storage for special nuclear materials. Facilities adjacent to EBR-II can provide the clean room environment needed to assemble and store the test article assembly, disassemble the power system at the conclusion of testing, and perform posttest examination. Capability for waste disposal is also available at the INL
Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit
The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012
- …