2,533 research outputs found

    Ontology and medical terminology: Why description logics are not enough

    Get PDF
    Ontology is currently perceived as the solution of first resort for all problems related to biomedical terminology, and the use of description logics is seen as a minimal requirement on adequate ontology-based systems. Contrary to common conceptions, however, description logics alone are not able to prevent incorrect representations; this is because they do not come with a theory indicating what is computed by using them, just as classical arithmetic does not tell us anything about the entities that are added or subtracted. In this paper we shall show that ontology is indeed an essential part of any solution to the problems of medical terminology – but only if it is understood in the right sort of way. Ontological engineering, we shall argue, should in every case go hand in hand with a sound ontological theory

    Controlling Costs to Improve Profit Potential

    Get PDF
    Jim and Ann Werner Registered Angus is a family operation. Both Jim and Ann grew up on farms and are fortunate that their four children and their families are all part of the business

    Effects of Concurrent Selection for Residual Feed Intake and Average Daily Gain on Fertility and Longevity in Black Angus Beef Females

    Get PDF
    Data from this analysis suggest that concurrent selection for both average daily gain and residual feed intake (RFI) may identify beef heifers that have improved fertility and longevity without impacting growth and maternal EPDs. As the beef industry continues to focus on sustainability, and thus efficiency, identification of commercial breeding stock that fit this mold will be imperative

    Identification of possible cow grazing behaviour indicators for restricted grass availability in a pasture-based spring calving dairy system

    Get PDF
    peer-reviewedPrecision livestock farming uses biosensors to measure different parameters of individual animals to support farmers in the decision making process. Although sensor development is advanced, there is still little implementation of sensor-based solutions on commercial farms. Especially on pasture-based dairy systems, the grazing management of cows is largely not supported by technology. A key factor in pasture-based milk production is the correct grass allocation to maximize the grass utilization per cow, while optimizing cow performance. Currently, grass allocation is mostly based on subjective eye measurements or calculations per herd. The aim of this study was to identify possible indicators of insufficient or sufficient grass allocation in the cow grazing behaviour measures. A total number of 30 cows were allocated a restricted pasture allowance of 60% of their intake capacity. Their behavioural characteristics were compared to those of 10 cows (control group) with pasture allowance of 100% of their intake capacity. Grazing behaviour and activity of cows were measured using the RumiWatchSystem for a complete experimental period of 10 weeks. The results demonstrated that the parameter of bite frequency was significantly different between the restricted and the control groups. There were also consistent differences observed between the groups for rumination time per day, rumination chews per bolus and frequency of cows standing or lying

    A Double Layered Water Cherenkov Detector Array for Gamma-Ray Astronomy

    Full text link
    Ground-level particle detection is now a well-established approach to TeV gamma-ray astronomy. Detection of Cherenkov light produced in water-filled detection units is a proven and cost-effective method. Here we discuss the optimization of the units towards the future Southern Wide-field Gamma-ray Observatory (SWGO). In this context, we investigate a new type of configuration in which each water Cherenkov detector (WCD) unit in the array comprises two chambers with black or reflective walls and a single photomultiplier tube (PMT) in each chamber. We find that this is a cost-effective approach that improves the performance of the WCD array with respect to current approaches. A shallow lower chamber with a PMT facing downwards enables muon tagging and the identification of hadron-induced air showers, which are the primary source of background in gamma-ray astronomy. We investigate how gamma/hadron separation power and achievable angular resolution depend on the geometry and wall reflectivity of the detector units in this configuration. We find that excellent angular resolution, background rejection power and low-energy response are achievable in this double-layer configuration, with the aid of reflective surfaces in both chambers.Comment: 17 pages, 20 figure

    Investigation of the effect of residual stresses in the subsurface on process forces for consecutive orthogonal cuts

    Get PDF
    The quality and surface integrity of machined parts is influenced by residual stresses in the subsurface resulting from cutting operations. These stress characteristics can not only affect functional properties such as fatigue life, but also the process forces during machining. Especially for orthogonal cutting as an appropriate experimental analogy setup for machining operations like milling, different undeformed chip thicknesses cause specific residual stress formations in the subsurface area. In this work, the process-related depth profile of the residual stress in AISI 4140 was investigated and correlated to the resulting cutting forces. Furthermore, an analysis of the microstructure of the cut material was performed, using additional characterization techniques such as electron backscatter diffraction and nanoindentation to account for subsurface alterations. On this basis, the influence of process-related stress profiles on the process forces for consecutive orthogonal cutting strategies is evaluated and compared to the results of a numerical model. The insights obtained provide a basis for future investigations on, e. g., empirical modeling of process forces including the influence of process-specific characteristics such as residual stress

    Design and Build of Reactor Simulator for Fission Surface Power Technology Demonstrator Unit

    Get PDF
    The Nuclear Systems Team at NASA Marshall Space Flight Center (MSFC) focuses on technology development for state of the art capability in non-nuclear testing of nuclear system and Space Nuclear Power for fission reactor systems for lunar and Mars surface power generation as well as radioisotope power systems for both spacecraft and surface applications. Currently being designed and developed is a reactor simulator (RxSim) for incorporation into the Technology Demonstrator Unit (TDU) for the Fission Surface Power System (FSPS) Program, which is supported by multiple national laboratories and NASA centers. The ultimate purpose of the RxSim is to provide heated NaK to a pair of Stirling engines in the TDU. The RxSim includes many different systems, components, and instrumentation that have been developed at MSFC while working with pumped NaK systems and in partnership with the national laboratories and NASA centers. The main components of the RxSim are a core, a pump, a heat exchanger (to mimic the thermal load of the Stirling engines), and a flow meter for tests at MSFC. When tested at NASA Glenn Research Center (GRC) the heat exchanger will be replaced with a Stirling power conversion engine. Additional components include storage reservoirs, expansion volumes, overflow catch tanks, safety and support hardware, instrumentation (temperature, pressure, flow) for data collection, and power supplies. This paper will discuss the design and current build status of the RxSim for delivery to GRC in early 2012
    corecore