21,144 research outputs found

    Element Abundance Determination in Hot Evolved Stars

    Full text link
    The hydrogen-deficiency in extremely hot post-AGB stars of spectral class PG1159 is probably caused by a (very) late helium-shell flash or a AGB final thermal pulse that consumes the hydrogen envelope, exposing the usually-hidden intershell region. Thus, the photospheric element abundances of these stars allow us to draw conclusions about details of nuclear burning and mixing processes in the precursor AGB stars. We compare predicted element abundances to those determined by quantitative spectral analyses performed with advanced non-LTE model atmospheres. A good qualitative and quantitative agreement is found for many species (He, C, N, O, Ne, F, Si, Ar) but discrepancies for others (P, S, Fe) point at shortcomings in stellar evolution models for AGB stars. Almost all of the chemical trace elements in these hot stars can only be identified in the UV spectral range. The Far Ultraviolet Spectroscopic Explorer and the Hubble Space Telescope played a crucial role for this research.Comment: To appear in: Recent Advances in Spectroscopy: Theoretical, Astrophysical, and Experimental Perspectives, Proceedings, Jan 28 - 31, 2009, Kodaikanal, India (Springer

    A non-pulsating neutron star in the supernova remnant HESS J1731-347 / G353.6-0.7 with a carbon atmosphere

    Full text link
    Context: The CCO candidate in the center of the supernova remnant shell HESS J1731-347 / G353.6-0.7 shows no pulsations and exhibits a blackbody-like X-ray spectrum. If the absence of pulsations is interpreted as evidence for the emitting surface area being the entire neutron star surface, the assumption of the measured flux being due to a blackbody emission translates into a source distance that is inconsistent with current estimates of the remnant's distance. Aims: With the best available observational data, we extended the pulse period search down to a sub-millisecond time scale and used a carbon atmosphere model to describe the X-ray spectrum of the CCO and to estimate geometrical parameters of the neutron star. Methods: To search for pulsations we used data of an observation of the source with XMM-Newton performed in timing mode. For the spectral analysis, we used earlier XMM-Newton observations performed in imaging mode, which permits a more accurate treatment of the background. The carbon atmosphere models used to fit the CCO spectrum are computed assuming hydrostatic and radiative equilibria and take into account pressure ionization and the presence of spectral lines. Results: Our timing analysis did not reveal any pulsations with a pulsed fraction above ~8% down to 0.2 ms. This finding further supports the hypothesis that the emitting surface area is the entire neutron star surface. The carbon atmosphere model provides a good fit to the CCO spectrum and leads to a normalization consistent with the available distance estimates of the remnant. The derived constraints on the mass and radius of the source are consistent with reasonable values of the neutron star mass and radius. After the CCO in Cas A, the CCO in HESS J1731-347 / G353.6-0.7 is the second object of this class for which a carbon atmosphere model provides a consistent description of X-ray emission.Comment: 6 pages, 5 figures, accepted for publication in Astronomy&Astrophysic

    Numerical studies of planar closed random walks

    Full text link
    Lattice numerical simulations for planar closed random walks and their winding sectors are presented. The frontiers of the random walks and of their winding sectors have a Hausdorff dimension dH=4/3d_H=4/3. However, when properly defined by taking into account the inner 0-winding sectors, the frontiers of the random walks have a Hausdorff dimension dH1.77d_H\approx 1.77.Comment: 15 pages, 15 figure

    Weak magnetic fields in white dwarfs and their direct progenitors?

    Full text link
    We have carried out a re-analysis of polarimetric data of central stars of planetary nebulae, hot subdwarfs, and white dwarfs taken with FORS1 (FOcal Reducer and low dispersion Spectrograph) on the VLT (Very Large Telescope), and added a large number of new observations in order to increase the sample. A careful analysis of the observations using only one wavelength calibration for the polarimetrically analysed spectra and for all positions of the retarder plate of the spectrograph is crucial in order to avoid spurious signals. We find that the previous detections of magnetic fields in subdwarfs and central stars could not be confirmed while about 10% of the observed white dwarfs have magnetic fields at the kilogauss level.Comment: 6 pages, Proceedings of the 18th European White Dwarf Workshop, ASP Conference Serie

    The NASA Spitzer Space Telescope

    Get PDF
    The National Aeronautics and Space Administration's Spitzer Space Telescope (formerly the Space Infrared Telescope Facility) is the fourth and final facility in the Great Observatories Program, joining Hubble Space Telescope (1990), the Compton Gamma-Ray Observatory (1991–2000), and the Chandra X-Ray Observatory (1999). Spitzer, with a sensitivity that is almost three orders of magnitude greater than that of any previous ground-based and space-based infrared observatory, is expected to revolutionize our understanding of the creation of the universe, the formation and evolution of primitive galaxies, the origin of stars and planets, and the chemical evolution of the universe. This review presents a brief overview of the scientific objectives and history of infrared astronomy. We discuss Spitzer's expected role in infrared astronomy for the new millennium. We describe pertinent details of the design, construction, launch, in-orbit checkout, and operations of the observatory and summarize some science highlights from the first two and a half years of Spitzer operations. More information about Spitzer can be found at http://spitzer.caltech.edu/

    Lowering of surface melting temperature in atomic clusters with a nearly closed shell structure

    Get PDF
    We investigate the interplay of particle number, N, and structural properties of selected clusters with N=12 up to N=562 by employing Gupta potentials parameterized for Aluminum and extensive Monte-Carlo simulations. Our analysis focuses on closed shell structures with extra atoms. The latter can put the cluster under a significant stress and we argue that typically such a strained system exhibits a reduced energy barrier for (surface) diffusion of cluster atoms. Consequently, also its surface melting temperature, T_S, is reduced, so that T_S separates from and actually falls well below the bulk value. The proposed mechanism may be responsible for the suppression of the surface melting temperature observed in a recent experiments.Comment: 9 pages, 7 figures, 1 table, REVTeX 4; submitted to Phys.Rev.

    Violation of Bell's inequalities implies distillability for N qubits

    Full text link
    We consider quantum systems composed of NN qubits, and the family of all Bell's correlation inequalities for two two-valued measurements per site. We show that if a NN-qubit state ρ\rho violates any of these inequalities, then it is at least bipartite distillable. Indeed there exists a link between the amount of Bell's inequality violation and the degree of distillability. Thus, we strengthen the interpretation of Bell's inequalities as detectors of useful entanglement.Comment: 6 pages, 3 figures, REVTEX. List of authors extended. Partially rewritten, a rather qualitative explanation of the results. Conclusions unchange

    Creating pseudo Kondo-resonances by field-induced diffusion of atomic hydrogen

    Full text link
    In low temperature scanning tunneling microscopy (STM) experiments a cerium adatom on Ag(100) possesses two discrete states with significantly different apparent heights. These atomic switches also exhibit a Kondo-like feature in spectroscopy experiments. By extensive theoretical simulations we find that this behavior is due to diffusion of hydrogen from the surface onto the Ce adatom in the presence of the STM tip field. The cerium adatom possesses vibrational modes of very low energy (3-4meV) and very high efficiency (> 20%), which are due to the large changes of Ce-states in the presence of hydrogen. The atomic vibrations lead to a Kondo-like feature at very low bias voltages. We predict that the same low-frequency/high-efficiency modes can also be observed at lanthanum adatoms.Comment: five pages and four figure

    A measurement-based approach to quantum arrival times

    Get PDF
    For a quantum-mechanically spread-out particle we investigate a method for determining its arrival time at a specific location. The procedure is based on the emission of a first photon from a two-level system moving into a laser-illuminated region. The resulting temporal distribution is explicitly calculated for the one-dimensional case and compared with axiomatically proposed expressions. As a main result we show that by means of a deconvolution one obtains the well known quantum mechanical probability flux of the particle at the location as a limiting distribution.Comment: 11 pages, 4 figures, submitted to Phys. Rev.
    corecore