1,080 research outputs found

    NMSSM with generalized deflected mirage mediation

    Full text link
    We propose to generate a realistic soft SUSY breaking spectrum for Next-to-Minimal Supersymmetric Standard Model (NMSSM) with a generalized deflected mirage mediation scenario, in which additional Yukawa and gauge mediation contributions are included to deflect the renormalization group equation(RGE) trajectory. Based on the Wilsonian effective action obtained by integrating out the messengers, the NMSSM soft SUSY breaking spectrum can be given analytically at the messenger scale. We find that additional contributions to mS2m_S^2 can possibly ameliorate the stringent constraints from the electroweak symmetry breaking (EWSB) and 125 GeV Higgs mass. Constraints from dark matter and fine-tuning are also discussed. The Barbieri-Giudice fine-tuning measure and electroweak fine-tuning measure in our scenario can be as low as O(1){\cal O}(1), which possibly indicates that our scenario is natural.Comment: Published version, minor changes; 28 pages, 6 figure

    In Situ X-ray Absorption Spectroscopy Studies of Kinetic Interaction between Platinum(II) Ions and UiO-66 Series Metal–Organic Frameworks

    Get PDF
    The interaction of guest Pt(II) ions with UiO-66–X (X = NH2, H, NO2, OMe, F) series metal–organic frameworks (MOFs) in aqueous solution was investigated using in situ X-ray absorption spectroscopy. All of these MOFs were found to be able to coordinate with Pt(II) ions. The Pt(II) ions in UiO-66–X MOFs generally coordinate with 1.6–2.4 Cl and 1.4–2.4 N or O atoms. We also studied the time evolution of the coordination structure and found that Pt(II) maintained a coordination number of 4 throughout the whole process. Furthermore, the kinetic parameters of the interaction of Pt(II) ions with UiO-66–X series MOFs (X = NH2, H, NO2, OMe, F) were determined by combinational linear fitting of extended X-ray absorption fine structure (EXAFS) spectra of the samples. The Pt(II) adsorption rate constants were found to be 0.063 h–1 for UiO-66–NH2 and 0.011–0.017 h–1 for other UiO-66–X (X = H, NO2, OMe, F) MOFs, which means that Pt(II) adsorption in UiO-66–NH2 is 4–6 times faster than that in other UiO-66 series MOFs. FTIR studies suggested that the carboxyl groups could be the major host ligands binding with Pt(II) ions in UiO-66 series MOFs, except for UiO-66–NH2, in which amino groups coordinate with Pt(II) ions

    Tandem Catalysis by Palladium Nanoclusters Encapsulated in Metal–Organic Frameworks

    Get PDF
    A bifunctional Zr-MOF catalyst containing palladium nanoclusters (NCs) has been developed. The formation of Pd NCs was confirmed by transmission electron microscopy (TEM) and extended X-ray absorption fine structure (EXAFS). Combining the oxidation activity of Pd NCs and the acetalization activity of the Lewis acid sites in UiO-66-NH2, this catalyst (Pd@UiO-66-NH2) exhibits excellent catalytic activity and selectivity in a one-pot tandem oxidation-acetalization reaction. This catalyst shows 99.9% selectivity to benzaldehyde ethylene acetal in the tandem reaction of benzyl alcohol and ethylene glycol at 99.9% conversion of benzyl alcohol. We also examined various substituted benzyl alcohols and found that alcohols with electron-donating groups showed better conversion and selectivity compared to those with electron-withdrawing groups. We further proved that there was no leaching of active catalytic species during the reaction and the catalyst can be recycled at least five times without significant deactivation

    Controlling Catalytic Properties of Pd Nanoclusters through Their Chemical Environment at the Atomic Level Using Isoreticular Metal–Organic Frameworks

    Get PDF
    Control of heterogeneous catalytic sites through their surrounding chemical environment at an atomic level is crucial to catalyst design. We synthesize Pd nanoclusters (NCs) in an atomically tunable chemical environment using isoreticular metal–organic framework (MOF) supports (Pd@UiO-66-X, X = H, NH2, OMe). In an aerobic reaction between benzaldehyde and ethylene glycol, these catalysts show product distributions that are completely altered from the acetal to the ester when we change the functional groups on the MOF linkers from −NH2 to −H/–OMe. Diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) studies, along with density functional theory (DFT) calculations, show that the coordination of the −NH2 groups to the Pd NCs could weaken their oxidation capability to a greater extent in comparison to that of the −OMe group. Moreover, the limited number of −NH2 groups per cavity in the MOF change the electronic properties of the Pd NCs while still leaving open sites for catalysis

    Conversion of Levulinic Acid to γ-Valerolactone over Few-Layer Graphene-Supported Ruthenium Catalysts

    Get PDF
    Few-layer graphene (FLG) supported ruthenium nanoparticle catalysts were synthesized and used for the hydrogenation of levulinic acid (LA), one of the “top 10” biomass platform molecules derived from carbohydrates. FLG-supported ruthenium catalyst showed 99.7% conversion and 100% selectivity toward γ-valerolactone (GVL) at room temperature in a batch reactor under high-pressure hydrogen. This catalyst showed 4 times higher activity and exceptional stability in comparison with traditional activated carbon supported ruthenium catalysts (Ru/C). X-ray photoelectron spectroscopy (XPS) and Fourier transform infrared spectroscopy (FTIR) studies suggest that the superior catalytic properties of Ru nanoparticles supported on FLG in LA hydrogenation could be attributed to the greater metallic Ru content present in the Ru/FLG in comparison to that in Ru/C

    An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    Get PDF
    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermal stabilities compared with those prepared with organic capping agents. This inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties

    Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    Get PDF
    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO2, CdS, and Ni3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon source and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties (E1/2 = 0.850 V) in comparison with those of HCPs. We highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity
    corecore