388 research outputs found

    In Situ X-ray Absorption Spectroscopy Studies of Kinetic Interaction between Platinum(II) Ions and UiO-66 Series Metal–Organic Frameworks

    Get PDF
    The interaction of guest Pt(II) ions with UiO-66–X (X = NH2, H, NO2, OMe, F) series metal–organic frameworks (MOFs) in aqueous solution was investigated using in situ X-ray absorption spectroscopy. All of these MOFs were found to be able to coordinate with Pt(II) ions. The Pt(II) ions in UiO-66–X MOFs generally coordinate with 1.6–2.4 Cl and 1.4–2.4 N or O atoms. We also studied the time evolution of the coordination structure and found that Pt(II) maintained a coordination number of 4 throughout the whole process. Furthermore, the kinetic parameters of the interaction of Pt(II) ions with UiO-66–X series MOFs (X = NH2, H, NO2, OMe, F) were determined by combinational linear fitting of extended X-ray absorption fine structure (EXAFS) spectra of the samples. The Pt(II) adsorption rate constants were found to be 0.063 h–1 for UiO-66–NH2 and 0.011–0.017 h–1 for other UiO-66–X (X = H, NO2, OMe, F) MOFs, which means that Pt(II) adsorption in UiO-66–NH2 is 4–6 times faster than that in other UiO-66 series MOFs. FTIR studies suggested that the carboxyl groups could be the major host ligands binding with Pt(II) ions in UiO-66 series MOFs, except for UiO-66–NH2, in which amino groups coordinate with Pt(II) ions

    An inorganic capping strategy for the seeded growth of versatile bimetallic nanostructures

    Get PDF
    Metal nanostructures have attracted great attention in various fields due to their tunable properties through precisely tailored sizes, compositions and structures. Using mesoporous silica (mSiO2) as the inorganic capping agent and encapsulated Pt nanoparticles as the seeds, we developed a robust seeded growth method to prepare uniform bimetallic nanoparticles encapsulated in mesoporous silica shells (PtM@mSiO2, M = Pd, Rh, Ni and Cu). Unexpectedly, we found that the inorganic silica shell is able to accommodate an eight-fold volume increase in the metallic core by reducing its thickness. The bimetallic nanoparticles encapsulated in mesoporous silica shells showed enhanced catalytic properties and thermal stabilities compared with those prepared with organic capping agents. This inorganic capping strategy could find a broad application in the synthesis of versatile bimetallic nanostructures with exceptional structural control and enhanced catalytic properties

    Morphology inherence from hollow MOFs to hollow carbon polyhedrons in preparing carbon-based electrocatalysts

    Get PDF
    Hollow carbon nanostructures are emerging as advanced electrocatalysts for the oxygen reduction reaction (ORR) due to the effective usage of active sites and the reduced dependence on expensive noble metals. Conventional preparation of these hollow structures is achieved through templates (e.g. SiO2, CdS, and Ni3C), which serve to retain the void interiors during carbonization, leading to an essential template-removal procedure using hazardous chemical etchants. Herein, we demonstrate the direct carbonization of unique hollow zeolitic imidazolate frameworks (ZIFs) for the synthesis of hollow carbon polyhedrons (HCPs) with well-defined morphologies. The hollow ZIF particles behave bi-functionally as a carbon source and a morphology directing agent. This method evidences the strong morphology inherence from the hollow ZIFs during the carbonization, advancing the significant simplicity and environmental friendliness of this synthesis strategy. The as-prepared HCPs show a uniform polyhedral morphology and large void interiors, which enable their superior ORR activity. Iron can be doped into the HCPs (Fe/HCPs), providing the Fe/HCPs with enhanced ORR properties (E1/2 = 0.850 V) in comparison with those of HCPs. We highlight the efficient structural engineering to transform ZIFs into advanced carbon nanostructures accomplishing morphological control and high electrocatalytic activity

    Atomic-Scale Structure of Mesoporous Silica-Encapsulated Pt and PtSn Nanoparticles Revealed by Dynamic Nuclear Polarization-Enhanced Si-29 MAS NMR Spectroscopy

    Get PDF
    Mesoporous silica encapsulated Pt (Pt@mSiO2) and PtSn (PtSn@mSiO2) nanoparticles (NPs) are representatives of a novel class of heterogeneous catalysts with uniform particle size, enhanced catalytic properties, and superior thermal stability. In the ship-in-a-bottle synthesis, PtSn@mSiO2intermetallic NPs are derived from Pt@mSiO2 seeds where the mSiO2 shell is formed by polymerization of tetraethyl orthosilicate around a tetradecyltrimethylammonium bromide template, a surfactant used to template MCM-41. Incorporation of Sn into the Pt@mSiO2 seeds is accommodated by chemical etching of the mSiO2 shell. The effect of this etching on the atomic-scale structure of the mSiO2 has not been previously examined, nor has the extent of the structural similarity to MCM-41. Here, the quaternary Q2, Q3 and Q4 sites corresponding to formulas Si(O1/2)2(OH)2, Si(O1/2)3(OH)1 and Si(O1/2)4, in MCM-41 and the mesoporous silica of Pt@mSiO2 and PtSn@mSiO2 NPs were identified and quantified by conventional and dynamic nuclear polarization enhanced Si-29 Magic Angle Spinning Nuclear Magnetic Resonance (DNP MAS NMR). The connectivity of the -Si-O-Si- network was revealed by DNP enhanced two-dimensional 29Si-29Si correlation spectroscopy

    Kinetics, Energetics, and Size Dependence of the Transformation from Pt to Ordered PtSn Intermetallic Nanoparticles

    Get PDF
    The outstanding catalytic activity and chemical selectivity of intermetallic compounds make them excellent candidates for heterogeneous catalysis. However, the kinetics of their formation at the nanoscale is poorly understood or characterized, and precise control of their size, shape as well as composition during synthesis remains challenging. Here, using well-defined Pt nanoparticles (5 nm and 14 nm) encapsulated in mesoporous silica, we study the transformation kinetics from monometallic Pt to intermetallic PtSn at different temperatures by a series of time-evolution X-ray diffraction studies. Observations indicate an initial transformation stage mediated by Pt surface-controlled intermixing kinetics, followed by a second stage with distinct transformation kinetics corresponding to a Ginstling-Brounstein (G-B) type bulk diffusion mode. Moreover, the activation barrier for both surface intermixing and diffusion stages are obtained through the development of appropriate kinetic models for analysis of experimental data. Our density-functional-theory (DFT) calculations provide further insights into the atomistic-level processes and associated energetics underlying surface-controlled intermixing

    Intermetallic structures with atomic precision for selective hydrogenation of nitroarenes

    Get PDF
    Bridging the structure-properties relationship of bimetallic catalysts is essential for the rational design of heterogeneous catalysts. Different from random alloys, intermetallic compounds (IMCs) present atomically-ordered structures, which is advantageous for catalytic mechanism studies. We used Pt-based intermetallic nanoparticles (iNPs), individually encapsulated in mesoporous silica shells, as catalysts for the hydrogenation of nitroarenes to functionalized anilines. With the capping-free nature and ordered atomic structure, PtSn iNPs show \u3e99% selectivity to hydrogenate the nitro group of 3-nitrostyrene albeit with a lower activity, in contrast to Pt3Sn iNPs and Pt NPs. The geometric structure of PtSn iNPs in eliminating Pt threefold sites hampers the adsorption/dissociation of molecular H2 and leads to a non-Horiuti-Polanyi hydrogenation pathway, while Pt3Sn and Pt surfaces are saturated by atomic H. Calculations using density functional theory (DFT) suggest a preferential adsorption of the nitro group on the intermetallic PtSn surface contributing to its high selectivity

    A Ship-in-a-Bottle Strategy To Synthesize Encapsulated Intermetallic Nanoparticle Catalysts: Exemplified for Furfural Hydrogenation

    Get PDF
    Intermetallic compounds are garnering increasing attention as efficient catalysts for improved selectivity in chemical processes. Here, using a ship-in-a-bottle strategy, we synthesize single-phase platinum-based intermetallic nanoparticles (NPs) protected by a mesoporous silica (mSiO2) shell by heterogeneous reduction and nucleation of Sn, Pb, or Zn in mSiO2-encapsulated Pt NPs. For selective hydrogenation of furfural to furfuryl alcohol, a dramatic increase in activity and selectivity is observed when intermetallic NPs catalysts are used in comparison to Pt@mSiO2. Among the intermetallic NPs, PtSn@mSiO2 exhibits the best performance, requiring only one-tenth of the quantity of Pt used in Pt@mSiO2 for similar activity and near 100% selectivity to furfuryl alcohol. A high-temperature oxidation–reduction treatment easily reverses any carbon deposition-induced catalyst deactivation. X-ray photoelectron spectroscopy shows the importance of surface composition to the activity, whereas density functional theory calculations reveal that the enhanced selectivity on PtSn compared to Pt is due to the different furfural adsorption configurations on the two surfaces
    • 

    corecore