235 research outputs found

    Evaluating the theory of bone mechanoregulation in the physiological loading scenario

    Get PDF
    In this paper, the theory of bone mechanoregulation under physiological loading was evaluated. The entire right tibiae of wild type (WT, N=5) and parathyroid hormone (PTH, N=5) treated C57BL/6J female mice were scanned using an in vivo μCT imaging system at 14, 16, 17, 18, 19, 20, 21, and 22 weeks. The PTH intervention started from week 18 until week 22. Subject-specific finite element (FE) models were created from the μCT images and physiological loading condition was defined in the FE models. The rates of changes in bone mineral content (BMC), bone mineral density (BMD), and bone tissue density (TMD) were quantified over 40 anatomical compartments across the entire mouse tibia. The resulting values were then correlated to the average 1st principal tensile strain (ε1) and the strain energy density (SED) for every compartment at weeks 18, 20, and 22. It was found that: in both groups, ε1 had a minimal effect on the variability of ΔBMC (p>0.01); SED had a significant effect on the variability of ΔBMC only in the WT group (p0.01). These results are the first to reveal the mechanism of bone mechanoregulation in the physiological loading scenario

    A multivariate prediction model for microarray cross-hybridization

    Get PDF
    BACKGROUND: Expression microarray analysis is one of the most popular molecular diagnostic techniques in the post-genomic era. However, this technique faces the fundamental problem of potential cross-hybridization. This is a pervasive problem for both oligonucleotide and cDNA microarrays; it is considered particularly problematic for the latter. No comprehensive multivariate predictive modeling has been performed to understand how multiple variables contribute to (cross-) hybridization. RESULTS: We propose a systematic search strategy using multiple multivariate models [multiple linear regressions, regression trees, and artificial neural network analyses (ANNs)] to select an effective set of predictors for hybridization. We validate this approach on a set of DNA microarrays with cytochrome p450 family genes. The performance of our multiple multivariate models is compared with that of a recently proposed third-order polynomial regression method that uses percent identity as the sole predictor. All multivariate models agree that the 'most contiguous base pairs between probe and target sequences,' rather than percent identity, is the best univariate predictor. The predictive power is improved by inclusion of additional nonlinear effects, in particular target GC content, when regression trees or ANNs are used. CONCLUSION: A systematic multivariate approach is provided to assess the importance of multiple sequence features for hybridization and of relationships among these features. This approach can easily be applied to larger datasets. This will allow future developments of generalized hybridization models that will be able to correct for false-positive cross-hybridization signals in expression experiments

    Study on stability and homology analysis of arginine kinase from oyster

    Get PDF
    Objective To identify the natural protein arginine kinase (AK) extracted from oysters, and to understand its basic properties and homology. Methods AK was isolated and purified from oysters by ammonium sulfate salting out and anion exchange, and the relative molecular mass and secondary structure were determined by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and circular dichroism (CD) spectroscopy. Its stability was also studied. The amino acid sequences of oyster AK and 11 other crustacean and mollusk allergens were compared by bioinformatics software, and their homology was analyzed. Results The natural protein with a relative molecular weight of 40 kDa was oyster AK. AK was neither heat-resistant nor acid-resistant. Oyster AK has high homology of mollusk allergen AK amino acid sequence, and homology of crustacean amino acid sequence is 55%-60%. Conclusion Natural AK is extracted from oysters, and the stability and homology are basically understood. It will lay the foundation for comprehensive research on sensitization and sensitization mechanism of oysters

    Mechanistic study of visible light-driven CdS or g-C<sub>3</sub>N<sub>4</sub>-catalyzed C–H direct trifluoromethylation of (hetero)arenes using CF<sub>3</sub>SO<sub>2</sub>Na as the trifluoromethyl source

    Get PDF
    The mild and sustainable methods for C–H direct trifluoromethylation of (hetero)arenes without any base or strong oxidants are in extremely high demand. Here, we report that the photo-generated electron-hole pairs of classical semiconductors (CdS or g-C3N4) under visible light excitation are effective to drive C–H trifluoromethylation of (hetero)arenes with stable and inexpensive CF3SO2Na as the trifluoromethyl (TFM) source via radical pathway. Either CdS or g-C3N4 propagated reaction can efficiently transform CF3SO2Na to [rad]CF3 radical and further afford the desired benzotrifluoride derivatives in moderate to good yields. After visible light initiated photocatalytic process, the key elements (such as F, S and C) derived from the starting TFM source of CF3SO2Na exhibited differential chemical forms as compared to those in other oxidative reactions. The photogenerated electron was trapped by chemisorbed O2 on photocatalysts to form superoxide radical anion (O2[rad]−) which will further attack [rad]CF3 radical with the generation of inorganic product F− and CO2. This resulted in a low utilization efficiency of [rad]CF3 (&lt;50%). When nitro aromatic compounds and CF3SO2Na served as the starting materials in inert atmosphere, the photoexcited electrons can be directed to reduce the nitro group to amino group rather than being trapped by O2. Meanwhile, the photogenerated holes oxidize SO2CF3− into [rad]CF3. Both the photogenerated electrons and holes were engaged in reductive and oxidative paths, respectively. The desired product, trifluoromethylated aniline, was obtained successfully via one-pot free-radical synthesis.</p

    Transfusion of Resting Platelets Reduces Brain Hemorrhage After Intracerebral Hemorrhage and tPA-Induced Hemorrhage After Cerebral Ischemia

    Get PDF
    BackgroundExacerbated blood-brain barrier (BBB) damage is related with tissue plasminogen activator (tPA)-induced brain hemorrhage after stroke. Platelets have long been recognized as the cellular orchestrators of primary haemostasis. Recent studies have demonstrated further that platelets are required for supporting intact mature blood vessels and play a crucial role in maintaining vascular integrity during inflammation. Therefore, we sought to investigate whether platelets could reduce tPA-induced deterioration of cerebrovascular integrity and lead to less hemorrhagic transformation.MethodsMice were subjected to models of collagenase-induced intracerebral hemorrhage (ICH) and transient middle cerebral artery (MCA) occlusion. After 2 h of MCA occlusion, tPA (10 mg/kg) was administered as an intravenous bolus injection of 1 mg/kg followed by a 9 mg/kg infusion for 30 min. Immediately after tPA treatment, mice were transfused with platelets. Hemorrhagic volume, infarct size, neurological deficit, tight junction and basal membrane damages, endothelial cell apoptosis, and extravascular accumulation of circulating dextran and IgG, and Evans blue were quantified at 24 h.ResultsPlatelet transfusion resulted in a significant decrease in hematoma volume after ICH. In mice after ischemia, tPA administration increased brain hemorrhage transformation and this was reversed by resting but not activated platelets. Consistent with this, we observed that tPA-induced brain hemorrhage was dramatically exacerbated in thrombocytopenic mice. Transfusion of resting platelets ameliorated tPA-induced loss of cerebrovascular integrity and reduced extravascular accumulation of circulating serum proteins and Evans blue, associated with improved neurological functions after ischemia. No changes were found for infarct volume. Inhibition of platelet receptor glycoprotein VI (GPVI) blunted the ability of platelets to attenuate tPA-induced BBB disruption and hemorrhage after ischemia.ConclusionOur findings demonstrate the importance of platelets in safeguarding BBB integrity and suggest that transfusion of resting platelets may be useful to improve the safety of tPA thrombolysis in ischemic stroke

    Growth Differentiation Factor 11 Promotes Neurovascular Recovery After Stroke in Mice

    Get PDF
    Background: Growth differentiation factor 11 (GDF11), a member of transforming growth factor-β (TGF-β) superfamily, was shown to rejuvenate cardiac and skeletal muscle function and to improve cerebral vasculature and neurogenesis in old mice. However, recent experimental data reported that raising GDF11 levels inhibited skeletal muscle regeneration and had no effect on cardiac hypertrophy. Our aim was to investigate the effects of GDF11 on brain repair during the recovery phase after stroke.Methods: Mice were subjected to distal middle cerebral artery occlusion, and recombinant GDF11 (rGDF11) was injected intraperitoneally once a day during days 7–13 after stroke. Neuronal precursor cells (NPCs) proliferation and angiogenesis were assayed at 14 days. Neuronal regeneration was assayed at 42 days. The beam-walking test and CatWalk were used to evaluate behavioral functions. Downstream pathways of GDF11 were also investigated.Results: GDF11 was upregulated in the ipsilateral peri-infarct cortex and subventricular zone (SVZ) at 14 days after stroke. Treatment with rGDF11 enhanced the number of newborn NPCs and endothelial cells, microvascular length and area, and brain capillary perfusion. Western blots showed that rGDF11 upregulated brain-derived neurotrophic factor (BDNF) and increased the levels of proangiogenic factor angiopoietin-2 (Ang-2) and phosphorylation of vascular endothelial growth factor receptor-2 (VEGFR-2). We also found that rGDF11 upregulated the transcription factors Smad2 and Smad3 phosphorylation, but these activations were blocked by a TGF-β receptor inhibitor SB431542. Moreover, rGDF11-induced angiogenic remodeling and NPCs proliferation were reversed by injection of SB431542, suggesting that GDF11 may exert its effect via the TGF-β/Smad2/3 signaling pathway. Finally, treating mice with rGDF11 resulted in a significant increase in neuronal regeneration and functional recovery.Conclusion: GDF11 promoted neurogenesis and angiogenesis and contributed to functional recovery after stroke in mice

    Cellular crosstalk of macrophages and therapeutic implications in non-small cell lung cancer revealed by integrative inference of single-cell transcriptomics

    Get PDF
    Introduction: Non-small cell lung cancer (NSCLC) exhibits heterogeneity with diverse immune cell infiltration patterns that can influence tumor cell behavior and immunotherapy. A comprehensive characterization of the tumor microenvironment can guide precision medicine.Methods: Here, we generated a single-cell atlas of 398170 cells from 52 NSCLC patients, and investigated the imprinted genes and cellular crosstalk for macrophages. Subsequently, we evaluated the effect of tumor cells on macrophages and verified the expression of marker genes using co-culture experiments, flow cytometry and RT-qPCR assays.Results: Remarkable macrophage adaptability to NSCLC environment was observed, which contributed to generating tumor-associated macrophages (TAMs). We identified 5 distinct functional TAM subtypes, of which the majority were SELENOP-positive macrophages, with high levels of SLC40A1 and CCL13. The TAMs were also involved in mediating CD8+ T cell activity and form intercellular interaction with cancer cells, as indicated by receptor-ligand binding. Indirect coculture of tumor cells SPC-A1 and THP-1 monocytes, produced M2-like TAMs that highly expressed several markers of SELENOP-positive macrophages. The abundance of this type TAMs seemed to be associated with poorer overall survival rates [hazard ratio (HR) = 1.34, 95% confidence interval (CI) = 0.98-1.83, p = 0.068] based on deconvolution of TCGA-LUAD dataset.Discussion: In summary, we provided a high-resolution molecular resource of TAMs, and displayed the acquired properties in the tumor microenvironment. Dynamic crosstalk between TAMs and tumor cells via multiple ligand-receptor pairs were revealed, emphasizing its role in sustaining the pro-tumoral microenvironment and its implications for cancer therapy

    Transforming growth factor-β1 and SMAD signalling pathway in the small airways of smokers and patients with COPD: potential role in driving fibrotic type-2 epithelial mesenchymal transition

    Get PDF
    BackgroundCOPD is a common disease characterized by respiratory airflow obstruction. TGF-β1 and SMAD pathway is believed to play a role in COPD pathogenesis by driving epithelial mesenchymal transition (EMT).MethodsWe investigated TGF-β1 signalling and pSmad2/3 and Smad7 activity in resected small airway tissue from patients with; normal lung function and a smoking history (NLFS), current smokers and ex-smokers with COPD GOLD stage 1 and 2 (COPD-CS and COPD-ES) and compared these with normal non-smoking controls (NC). Using immunohistochemistry, we measured activity for these markers in the epithelium, basal epithelium, and reticular basement membrane (RBM). Tissue was also stained for EMT markers E-cadherin, S100A4 and vimentin.ResultsThe Staining of pSMAD2/3 was significantly increased in the epithelium, and RBM of all COPD groups compared to NC (p &lt;0.0005). There was a less significant increase in COPD-ES basal cell numbers compared to NC (p= 0.02). SMAD7 staining showed a similar pattern (p &lt;0.0001). All COPD group levels of TGF-β1 in the epithelium, basal cells, and RBM cells were significantly lower than NC (p &lt;0.0001). Ratio analysis showed a disproportionate increase in SMAD7 levels compared to pSMAD2/3 in NLFS, COPD-CS and COPD-ES. pSMAD negatively correlated with small airway calibre (FEF25–75%; p= 0.03 r= -0.36). EMT markers were active in the small airway epithelium of all the pathological groups compared to patients with COPD.ConclusionActivation of the SMAD pathway via pSMAD2/3 is triggered by smoking and active in patients with mild to moderate COPD. These changes correlated to decline in lung function. Activation of the SMADs in the small airways is independent of TGF-β1, suggesting factors other than TGF-β1 are driving these pathways. These factors may have implications for small airway pathology in smokers and COPD through the process of EMT, however more mechanistic work is needed to prove these correlations
    • …
    corecore