19 research outputs found

    Transcriptional factor regulation network and competitive endogenous RNA (ceRNA) network determining response of esophageal squamous cell carcinomas to neoadjuvant chemoradiotherapy

    Get PDF
    Background Neoadjuvant chemoradiotherapy (nCRT) followed by surgery benefits survival for patients with esophageal squamous cell carcinomas (ESCC) compared with surgery alone, but the clinical outcomes of nCRT are heterogeneous. This study aimed to elucidate transcriptional factor (TF) regulation network and competitive endogenous RNA (ceRNA) network determining response of ESCC to nCRT. Materials and Methods RNA microarray data of GSE59974 and GSE45670 were analyzed to investigate the significant changes of lincRNAs, miRNAs, mRNAs in responders and non-responders of nCRT in ESCC. Functional and enrichment analyses were conducted by clusterProfiler. The target lincRNAs and mRNAs of miRNAs were predicted by miRWalk. The ceRNA and TF regulatory networks were constructed using Cytoscape. Results Differentially expressed genes between responders and non-responders mainly enriched in biological process including Wnt signaling pathway and regulation of cell development and morphogenesis involved in differentiation. Besides, these genes showed enrichment in molecular function of glycosaminoglycan binding, metalloendopeptidase inhibitor and growth factor activity. KEGG analysis enriched these genes in pathways of neurotrophin signaling pathway, cell adhesion molecules and Wnt signaling pathway. We also constructed ceRNA network and TF network regulating response of ESCC to nCRT. Core regulatory miRNAs were miR-520a, miR-548am, miR-3184, miR-548d, miR-4725, miR-148a, miR-4659a and key regulatory TFs included MBNL1, SLC26A3, BMP4, ZIC1 and ANKRD7. Conclusion We identified significantly altered lincRNAs, miRNAs and mRNAs involved in the nCRT response of ESCC. In addition, the ceRNA regulatory network of lincRNA-miRNA-mRNA and TF regulatory network were constructed, which would elucidate novel molecular mechanisms determining nCRT response of ESCC, thus providing promising clues for clinical therapy

    Medical expenditure trajectory and HbA1c progression prior to and after clinical diagnosis of type 2 diabetes in a commercially insured population in the USA

    No full text
    Introduction Medical expenditures of individuals with type 2 diabetes escalate before clinical diagnosis. How increases in medical expenditures are related to glucose levels remains unclear. We examined changes in HbA1c and medical expenditures in years prior to and shortly after type 2 diabetes diagnosis.Research design and methods Using insurance claims and laboratory test results from a commercially insured population in the USA, we built three (2014, 2015, 2016) longitudinal cohorts with type 2 diabetes up to 10 years before and 2 years after the diagnosis (index year). We identified diabetes diagnosis using International Classification of Diseases, Ninth Revision and Tenth Revision codes and antidiabetic medication use. We ran two individual fixed regression models with annual total medical expenditures and average HbA1c values as dependent variables and number of years from diagnosis as the main independent variable and examined the risk-adjusted movement of the outcomes.Results Our study included 9847 individuals (83 526 person-years). Medical expenditures and HbA1c levels increased before and peaked at the diagnosis year. Medical expenditures were 8644lower10yearsand8644 lower 10 years and 5781 lower 1 year before diagnosis compared with the index year. HbA1c was 12.18 mmol/mol (1.11 percentage points) and 3.49 mmol/mol (0.32 percentage points) lower, respectively. Average annual increases in medical expenditures and HbA1c values over the prediagnosis period were $318 and 0.97 mmol/mol (0.09 percentage points), respectively.Conclusions Medical expenditures and HbA1c values followed similar trajectories before and after diabetes diagnosis. Our results can inform economic evaluations of programs and policies aimed at preventing type 2 diabetes

    Proteomic analysis of Biliverdin protected cerebral ischemia–reperfusion injury in rats

    No full text
    Abstract Biliverdin, a heme metabolite, has been previously reported to alleviate cerebral ischemic reperfusion injury (CIRI). However, the alterations of brain proteome profiles underlying this treatment remain elusive. The objective of this study is to analyze the differential protein expression profile in cerebral cortex of rats involved in anti-CIRI effects of Biliverdin, providing experimental foundation for searching specific marker proteins. Rat model of MCAO/R was established, HE staining, TTC staining, TUNEL staining, and neurological behavioral examination, corner turning test, adhesive removal test, were performed to validate the effects of Biliverdin, and the results indicated that Biliverdin plays a significant role in alleviating CIRI. Furthermore, proteomic analysis of brain tissues of rats subjected to CIRI following Biliverdin treatment was performed using an integrated TMT-based quantitative proteomic approach coupled with LC-MS/MS technology to clarify the comprehensive mechanisms of Biliverdin in CIRI. First, we conducted strict quality control data for TMT experiments. Finally, a total of 7366 proteins were identified, of which 95 proteins were differentially expressed (DEPs) between the CIRI group and the Sham group and 52 between the CIRI and BV groups. In addition, two overlapping proteins among the 147 DEPs, Atg4c and Camlg, were validated by RT-qPCR and western blotting, and their levels were consistent with the results of TMT analysis. Taken together, the current findings firstly mapped comprehensive proteomic changes after CIRI treated with Biliverdin, providing a foundation for developing potentially therapeutic targets of anti-CIRI of Biliverdin and clinically prognostic biomarkers of stroke

    Biliverdin modulates the Nrf2/A20/eEF1A2 axis to alleviate cerebral ischemia-reperfusion injury by inhibiting pyroptosis

    No full text
    This study aimed to examine whether Biliverdin, which is a common metabolite of haem, can alleviate cerebral ischemia reperfusion injury (CIRI) by inhibiting pyroptosis. Here, CIRI was induced by middle cerebral artery occlusion-reperfusion (MCAO/R) in C57BL/6 J mice and modelled by oxygen and glucose deprivation/reoxygenation (OGD/R) in HT22 cells, it was treated with or without Biliverdin. The spatiotemporal expression of GSDMD-N and infarction volumes were assessed by immunofluorescence staining and triphenyltetrazolium chloride (TTC), respectively. The NLRP3/Caspase-1/GSDMD pathway, which is central to the pyroptosis process, as well as the expression of Nrf2, A20, and eEF1A2 were determined by Western-blots. Nrf2, A20, and eEF1A2 interactions were verified using dual-luciferase reporter assays, chromatin immunoprecipitation, or co-immunoprecipitation. Additionally, the role of Nrf2/A20/eEF1A2 axis in modulating the neuroprotective properties of Biliverdin was investigated using A20 or eEF1A2 gene interference (overexpression and/or silencing). 40 mg/kg of Biliverdin could significantly alleviate CIRI both in vivo and in vitro, promoted the activation of Nrf2, elevated A20 expression, but decreased eEF1A2 expression. Nrf2 can bind to the promoter of A20, thereby transcriptionally regulating the expression of A20. A20 can furthermore interacted with eEF1A2 through its ZnF4 domain to ubiquitinate and degrade it, leading to the downregulation of eEF1A2. Our studies have also demonstrated that either the knock-down of A20 or over-expression of eEF1A2 blunted the protective effect of Biliverdin. Rescue experiments further confirmed that Biliverdin could regulate the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. In summary, our study demonstrates that Biliverdin ameliorates CIRI by inhibiting the NF-κB pathway via the Nrf2/A20/eEF1A2 axis. Our findings can help identify novel therapeutic targets for the treatment of CIRI

    Study on the Effect of Fe3+ on Zircon Flotation Separation from Cassiterite Using Sodium Oleate as Collector

    No full text
    The effect of ferric ions (Fe3+) on the flotation of zircon and cassiterite using sodium oleate (NaOL) was investigated by single mineral flotation tests, adsorption density tests, zeta potential measurements, solution chemistry analyses, and FTIR analyses. It is difficult for zircon to be separated from cassiterite by using NaOL alone. Nevertheless, the flotation of zircon was activated while that of cassiterite was depressed in the presence of Fe3+. Adsorption density tests indicated that the addition of Fe3+ enhanced the adsorption of NaOL on zircon surfaces, whereas it receded on cassiterite surfaces. Zeta potential measurements and solution chemistry analyses found that H(OL) 2 − was the predominant species to determine the flotation behaviors of zircon and cassiterite. Furthermore, the addition of Fe3+ at pH < 8 reduced the negative charges on the zircon and cassiterite surfaces. It was confirmed that the positive charges of zircon were caused by the positively charged species of Fe3+, including Fe3+, Fe(OH)2+, and Fe(OH) 2 + . Meanwhile, these results revealed that the hydroxy complex and the precipitate of Fe(OH)3(s) adsorbed onto the cassiterite surfaces caused the flotation of cassiterite to be inhibited. It can be concluded from FTIR analyses that the peaks of zircon at 894.14 cm−1 and 611.65 cm−1 were strengthened and the adsorption on zircon surfaces was found to be chemisorption due to the addition of Fe3+, whereas both chemical and physical adsorptions of NaOL on cassiterite surfaces were weakened, resulting in the different flotation behaviors of zircon and cassiterite in the presence of Fe3+

    "Thiol-ene" grafting of silica particles with three-dimensional branched copolymer for HILIC/cation-exchange chromatographic separation and N-glycopeptide enrichment

    No full text
    Three-dimensional branched copolymer, with N,N'-methylene bisacrylamide as the crosslinker and 3-allyloxy-2-hydroxy-1-propane sulfonic acid sodium salt as the monomer, was grafted from silica particles by thiol-ene click reaction. The obtained hydrophilic material with sulfonic acid groups was successfully applied for chromatography separation and glycopeptide enrichment. The separation mechanism was proven as the mixed mode of hydrophilic interaction and cation-exchange by investigating the effect of various chromatographic factors on the retention of polar analytes. By such mixed-mode chromatography, nucleosides, nucleobases, and acidic compounds were successfully separated. The column efficiency was up to 136,000 theoretical plates m(-1) for cytidine, which was much higher than those of previous reports. Furthermore, benefitting from the large amount of hydrophilic groups provided by the branched copolymer, the material was used for the selective enrichment of glycopeptides. Results demonstrated the great potential of such material for chromatography separation and glycoproteome analysis

    Microglia-derived exosomal circZNRF1 alleviates paraquat-induced neuronal cell damage via miR-17-5p

    No full text
    Paraquat (PQ) is an environmental poison that causes clinical symptoms similar to those of Parkinson's disease (PD) in vitro and in rodents. It can lead to the activation of microglia and apoptosis of dopaminergic neurons. However, the exact role and mechanism of microglial activation in PQ-induced neuronal degeneration remain unknown. Here, we isolated the microglia-derived exosomes exposed with 0 and 40 μM PQ, which were subsequently co-incubated with PQ-exposed neuronal cells to simulate intercellular communication. First, we found that exosomes released from microglia caused a change in neuronal cell vitality and reversed PQ-induced neuronal apoptosis. RNA sequencing data showed that these activated microglia-derived exosomes carried large amounts of circZNRF1. Moreover, a bioinformatics method was used to study the underlying mechanism of circZNRF1 in regulating PD, and miR-17–5p was predicted to be its target. Second, an increased Bcl2/Bax ratio could play an anti-apoptotic role. Bcl2 was predicted to be a downstream target of miR-17–5p. Our results showed that circZNRF1 plays an anti-apoptotic role by absorbing miR-17–5p and regulating the binding of Bcl2 after exosomes are internalized by dopaminergic neurons. In conclusion, we demonstrated a new intercellular communication mechanism between microglia and neurons, in which circZNRF1 plays a key role in protecting against PQ-induced neuronal apoptosis through miR-17–5p to regulate the biological process of PD. These findings may offer a novel approach to preventing and treating PD

    Single-cell RNA-sequencing of cellular heterogeneity and pathogenic mechanisms in paraquat-induced Parkinson's disease with depression

    No full text
    Parkinson's disease (PD) is among the most prevalent neurodegenerative diseases, and approximately one third of patients with PD are estimated to have depression. Paraquat (PQ) exposure is an important environmental risk factor for PD. In this study, we established a mouse model of PQ-induced PD with depression to comprehensively investigate cellular heterogeneity and the mechanisms underlying the progression of depression in the context of PD. We utilized single-cell RNA-seq (scRNA-seq) to acquire the transcriptomic atlas of individual cells from model mice and characterize the gene expression profiles in each differentially expressed cell type. We identified a specific glutamatergic neuron cluster responsible for the development of heterogeneous depression-associated changes and established a comprehensive gene expression atlas. Furthermore, functional enrichment and cell trajectory analyses revealed that the mechanisms underlying the progression of PD with depression were associated with specific glutamatergic neurons. Together, our findings provide a valuable resource for deciphering the cellular heterogeneity of PD with depression. The suggested connection between intrinsic transcriptional states of neurons and the progression of depression can provide insight into potential biomarkers and specific targets for anti-depression treatment in patients with PD. Synopsis: Our results obtained using model mice confirm the core effects of PQ exposure on glutamatergic neurons and their potential role in the development of PD with depression

    Boronic Acid-Functionalized Particles with Flexible Three-Dimensional Polymer Branch for Highly Specific Recognition of Glycoproteins

    No full text
    A novel organic–inorganic hybrid particle with high hydrophilicity three-dimensional boronic acid functional polymer branches was facilely synthesized through thiol–ene surface-initiated click reaction, by which the target glycoprotein could be captured selectively in the 5000-fold disrupting protein. This highest selectivity ever reported demonstrated that this boronic acid functionalized particle exhibited great potential in the recognition of cis-diol-containing biomolecules, including the glycoproteins
    corecore