87 research outputs found

    DACSR: Decoupled-Aggregated End-to-End Calibrated Sequential Recommendation

    Full text link
    Sequential recommendations have made great strides in accurately predicting the future behavior of users. However, seeking accuracy alone may bring side effects such as unfair and overspecialized recommendation results. In this work, we focus on the calibrated recommendations for sequential recommendation, which is connected to both fairness and diversity. On the one hand, it aims to provide fairer recommendations whose preference distributions are consistent with users' historical behaviors. On the other hand, it can improve the diversity of recommendations to a certain degree. But existing methods for calibration have mainly relied on the post-processing on the candidate lists, which require more computation time in generating recommendations. In addition, they fail to establish the relationship between accuracy and calibration, leading to the limitation of accuracy. To handle these problems, we propose an end-to-end framework to provide both accurate and calibrated recommendations for sequential recommendation. We design an objective function to calibrate the interests between recommendation lists and historical behaviors. We also provide distribution modification approaches to improve the diversity and mitigate the effect of imbalanced interests. In addition, we design a decoupled-aggregated model to improve the recommendation. The framework assigns two objectives to two individual sequence encoders, and aggregates the outputs by extracting useful information. Experiments on benchmark datasets validate the effectiveness of our proposed model

    Inherited Cardiomyopathies: Genetics and Clinical Genetic Testing

    Get PDF
    Inherited cardiomyopathies are major causes of morbidity and mortality and include a group of cardiac disorders such as hypertrophic cardiomyopathy (HCM), dilated cardiomyopathy, arrhythmogenic right ventricular dysplasia/cardiomyopathy (ARVD/C), left ventricular noncompaction (LVNC), and restrictive cardiomyopathy (RCM). These diseases have a substantial genetic component and predispose to sudden cardiac death. Since the first gene was identified as a disease-causing gene for HCM over two decades ago, more than eighty genes have been identified to be associated with inherited cardiomyopathies and genetic testing has become prevalent in making clinical diagnosis. With the advent of next-generation sequencing technology, genetic panel testing of inherited cardiomyopathies has become feasible and cost efficient. In this review, we summarize the individual cardiomyopathies with the emphasis on cardiomyopathy genetics and genetic testing

    The rising death burden of atrial fibrillation and flutter in low-income regions and younger populations

    Get PDF
    ObjectiveThe aim of the study was to depict the global death burden of atrial fibrillation and/or flutter (AFF) between 1990 and 2019 and predict this burden in the next decade.MethodsWe retrieved annual death data on cases and rates of AFF between 1990 and 2019 from the Global Burden of Disease (GBD) Study 2019 and projected the trends for 2020–2029 by developing the Bayesian age-period-cohort model.ResultsThe global number of deaths from AFF increased from 117,038.00 in 1990 to 315,336.80 in 2019. This number is projected to reach 404,593.40 by 2029. The age-standardized mortality rates (ASMRs) of AFF have increased significantly in low- to middle-sociodemographic index (SDI) regions, which will surpass that in high SDI regions and reach above 4.60 per 100,000 by 2029. Globally, women have a higher ASMR than men, which is largely attributed to disproportionately higher mortality in women than men in lower SDI regions. Notably, AFF-related premature mortality continues to worsen worldwide. A pandemic of high systolic blood pressure and high body mass index (BMI) largely contributes to AFF-associated death. In particular, low- to middle-SDI regions and younger populations are increasingly affected by the rapidly growing current and future risk of high BMI.ConclusionThe global death burden of AFF in low-income countries and younger generations have not been sufficiently controlled in the past and will continue growing in the future, which is largely attributed to metabolic risks, particularly for high BMI. There is an urgent need to implement effective measures to control AFF-related mortality

    Recovery of Stored Aerobic Granular Sludge and Its Contaminants Removal Efficiency under Different Operation Conditions

    No full text
    The quick recovery process of contaminants removal of aerobic granular sludge (AGS) is complex, and the influencing factors are still not clear. The effects of dissolved oxygen (DO, air intensive aeration rate), organic loading rate (OLR), and C/N on contaminants removal characteristics of AGS and subsequently long-term operation of AGS bioreactor were investigated in this study. DO had a major impact on the recovery of AGS. The granules reactivated at air intensive aeration rate of 100 L/h achieved better settling property and contaminants removal efficiency. Moreover, protein content in extracellular polymeric substance (EPS) was almost unchanged, which demonstrated that an aeration rate of 100 L/h was more suitable for maintaining the biomass and the structure of AGS. Higher OLR caused polysaccharides content increase in EPS, and unstable C/N resulted in the overgrowth of filamentous bacteria, which presented worse NH + 4 -N and PO 3− 4 -P removal. Correspondingly, quick recovery of contaminants removal was accomplished in 12 days at the optimized operation conditions of aeration rate 100 L/h, OLR 4 g/L⋅d, and C/N 100 : 10, with COD, NH + 4 -N, and PO 3− 4 -P removal efficiencies of 87.2%, 86.9%, and 86.5%, respectively. The renovation of AGS could be successfully utilized as the seed sludge for the rapid start-up of AGS bioreactor

    Recovery of Stored Aerobic Granular Sludge and Its Contaminants Removal Efficiency under Different Operation Conditions

    Get PDF
    The quick recovery process of contaminants removal of aerobic granular sludge (AGS) is complex, and the influencing factors are still not clear. The effects of dissolved oxygen (DO, air intensive aeration rate), organic loading rate (OLR), and C/N on contaminants removal characteristics of AGS and subsequently long-term operation of AGS bioreactor were investigated in this study. DO had a major impact on the recovery of AGS. The granules reactivated at air intensive aeration rate of 100 L/h achieved better settling property and contaminants removal efficiency. Moreover, protein content in extracellular polymeric substance (EPS) was almost unchanged, which demonstrated that an aeration rate of 100 L/h was more suitable for maintaining the biomass and the structure of AGS. Higher OLR caused polysaccharides content increase in EPS, and unstable C/N resulted in the overgrowth of filamentous bacteria, which presented worse NH4+-N and PO43−-P removal. Correspondingly, quick recovery of contaminants removal was accomplished in 12 days at the optimized operation conditions of aeration rate 100 L/h, OLR 4 g/L·d, and C/N 100 : 10, with COD, NH4+-N, and PO43−-P removal efficiencies of 87.2%, 86.9%, and 86.5%, respectively. The renovation of AGS could be successfully utilized as the seed sludge for the rapid start-up of AGS bioreactor

    Verification and Validation of URANS Simulations of the Round Buoyant Jet in Counterflow

    No full text
    This paper presents a study on the verification and validation (V&V) of numerical solutions for round buoyant jets in counterflow. The unsteady flow was simulated using an unsteady Reynolds-averaged Navier⁻Stokes (URANS) solver with a two-phase mixture model. This work aimed to quantitatively investigate the reliability and applicability of various uncertainty estimators in the simulation of a buoyant jet in counterflow. Analysis of the discretization uncertainty estimation results revealed that the factor of safety (FS) and the modified FS (FS1) methods were the appropriate evaluation estimators in the simulation of a buoyant jet in counterflow. Validation by comparison with the experimental data indicated that the area without achieving the validation at the validation level was strongly related to the shear layer between the jet flow and the ambient fluid. Moreover, the predicted concentration contours, coherent structures, and centerline concentration were strongly affected by the grid resolution

    Doping the Buckminsterfullerene by Substitution: Density Functional Theory Studies of C59X (X = B, N, Al, Si, P, Ga, Ge, and As)

    No full text
    The heterofullerenes C59X (X = B, N, Al, Si, P, Ga, Ge, and As) were investigated by quantum chemistry calculations based on density functional theory. These hybrid cages can be seen as doping the buckminsterfullerene by heteroatom substitution. The geometrical structures, relative stabilities, electronic properties, vibrational frequencies, dielectric constants, and aromaticities of the doped cages were studied systemically and compared with those of the pristine C60 cage. It is found that the doped cages with different heteroatoms exhibit various electronic, vibrational, and aromatic properties. These results imply the possibility to modulate the physical properties of these fullerene-based materials by tuning substitution elements
    • …
    corecore