107 research outputs found

    Multi-domain Recommendation with Embedding Disentangling and Domain Alignment

    Full text link
    Multi-domain recommendation (MDR) aims to provide recommendations for different domains (e.g., types of products) with overlapping users/items and is common for platforms such as Amazon, Facebook, and LinkedIn that host multiple services. Existing MDR models face two challenges: First, it is difficult to disentangle knowledge that generalizes across domains (e.g., a user likes cheap items) and knowledge specific to a single domain (e.g., a user likes blue clothing but not blue cars). Second, they have limited ability to transfer knowledge across domains with small overlaps. We propose a new MDR method named EDDA with two key components, i.e., embedding disentangling recommender and domain alignment, to tackle the two challenges respectively. In particular, the embedding disentangling recommender separates both the model and embedding for the inter-domain part and the intra-domain part, while most existing MDR methods only focus on model-level disentangling. The domain alignment leverages random walks from graph processing to identify similar user/item pairs from different domains and encourages similar user/item pairs to have similar embeddings, enhancing knowledge transfer. We compare EDDA with 12 state-of-the-art baselines on 3 real datasets. The results show that EDDA consistently outperforms the baselines on all datasets and domains. All datasets and codes are available at https://github.com/Stevenn9981/EDDA.Comment: Accepted by CIKM'23 as a Long pape

    Debiasing Recommendation with Personal Popularity

    Full text link
    Global popularity (GP) bias is the phenomenon that popular items are recommended much more frequently than they should be, which goes against the goal of providing personalized recommendations and harms user experience and recommendation accuracy. Many methods have been proposed to reduce GP bias but they fail to notice the fundamental problem of GP, i.e., it considers popularity from a \textit{global} perspective of \textit{all users} and uses a single set of popular items, and thus cannot capture the interests of individual users. As such, we propose a user-aware version of item popularity named \textit{personal popularity} (PP), which identifies different popular items for each user by considering the users that share similar interests. As PP models the preferences of individual users, it naturally helps to produce personalized recommendations and mitigate GP bias. To integrate PP into recommendation, we design a general \textit{personal popularity aware counterfactual} (PPAC) framework, which adapts easily to existing recommendation models. In particular, PPAC recognizes that PP and GP have both direct and indirect effects on recommendations and controls direct effects with counterfactual inference techniques for unbiased recommendations. All codes and datasets are available at \url{https://github.com/Stevenn9981/PPAC}.Comment: Accepted by WWW'24 as a research full pape

    Error-Mitigated Quantum Simulation of Interacting Fermions with Trapped Ions

    Full text link
    Quantum error mitigation has been extensively explored to increase the accuracy of the quantum circuits in noisy-intermediate-scale-quantum (NISQ) computation, where quantum error correction requiring additional quantum resources is not adopted. Among various error-mitigation schemes, probabilistic error cancellation (PEC) has been proposed as a general and systematic protocol that can be applied to numerous hardware platforms and quantum algorithms. However, PEC has only been tested in two-qubit systems and a superconducting multi-qubit system by learning a sparse error model. Here, we benchmark PEC using up to four trapped-ion qubits. For the benchmark, we simulate the dynamics of interacting fermions with or without spins by applying multiple Trotter steps. By tomographically reconstructing the error model and incorporating other mitigation methods such as positive probability and symmetry constraints, we are able to increase the fidelity of simulation and faithfully observe the dynamics of the Fermi-Hubbard model, including the different behavior of charge and spin of fermions. Our demonstrations can be an essential step for further extending systematic error-mitigation schemes toward practical quantum advantages.Comment: 15 pages, 11 figure

    Unveiling causal attention in dogs' eyes with smart eyewear

    Get PDF
    Our goals are to better understand dog cognition, and to support others who share this interest. Existing investigation methods predominantly rely on human-manipulated experiments to examine dogs’ behavioral responses to visual stimuli such as human gestures. As a result, existing experimental paradigms are usually constrained to in-lab environments and may not reveal the dog’s responses to real-world visual scenes. Moreover, visual signals pertaining to dog behavioral responses are empirically derived from observational evidence, which can be prone to subjective bias and may lead to controversies. We aim to overcome or reduce the existing limitations of dog cognition studies by investigating a challenging issue: identifying the visual signal(s) from dog eye motion that can be utilized to infer causal explanations of its behaviors, namely estimating causal attention. To this end, we design a deep learning framework named Causal AtteNtIon NEtwork (CANINE) to unveil the dogs’ causal attention mechanism, inspired by the recent advance in causality analysis with deep learning. Equipped with CANINE, we developed the first eyewear device to enable inference on the vision-related behavioral causality of canine wearers. We demonstrate the technical feasibility of the proposed CANINE glasses through their application in multiple representative experimental scenarios of dog cognitive study. Various in-field trials are also performed to demonstrate the generality of the CANINE eyewear in real-world scenarios. With the proposed CANINE glasses, we collect the first large-scale dataset, named DogsView, which consists of automatically generated annotations on the canine wearer’s causal attention across a wide range of representative scenarios. The DogsView dataset is available online to facilitate research

    Sciences for The 2.5-meter Wide Field Survey Telescope (WFST)

    Full text link
    The Wide Field Survey Telescope (WFST) is a dedicated photometric survey facility under construction jointly by the University of Science and Technology of China and Purple Mountain Observatory. It is equipped with a primary mirror of 2.5m in diameter, an active optical system, and a mosaic CCD camera of 0.73 Gpix on the main focus plane to achieve high-quality imaging over a field of view of 6.5 square degrees. The installation of WFST in the Lenghu observing site is planned to happen in the summer of 2023, and the operation is scheduled to commence within three months afterward. WFST will scan the northern sky in four optical bands (u, g, r, and i) at cadences from hourly/daily to semi-weekly in the deep high-cadence survey (DHS) and the wide field survey (WFS) programs, respectively. WFS reaches a depth of 22.27, 23.32, 22.84, and 22.31 in AB magnitudes in a nominal 30-second exposure in the four bands during a photometric night, respectively, enabling us to search tremendous amount of transients in the low-z universe and systematically investigate the variability of Galactic and extragalactic objects. Intranight 90s exposures as deep as 23 and 24 mag in u and g bands via DHS provide a unique opportunity to facilitate explorations of energetic transients in demand for high sensitivity, including the electromagnetic counterparts of gravitational-wave events detected by the second/third-generation GW detectors, supernovae within a few hours of their explosions, tidal disruption events and luminous fast optical transients even beyond a redshift of 1. Meanwhile, the final 6-year co-added images, anticipated to reach g about 25.5 mag in WFS or even deeper by 1.5 mag in DHS, will be of significant value to general Galactic and extragalactic sciences. The highly uniform legacy surveys of WFST will also serve as an indispensable complement to those of LSST which monitors the southern sky.Comment: 46 pages, submitted to SCMP

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    • …
    corecore