6,331 research outputs found

    Dunkl translations, Dunkl-type BMOBMO space and Riesz transforms for Dunkl transform on L∞L^\infty

    Full text link
    In this paper, we will give some results on the support of Dunkl translations on compactly supported functions. Then we will define Dunkl-type BMOBMO space and Riesz transforms for Dunkl transform on L∞L^\infty, and prove the boundedness of Riesz transforms from L∞L^\infty to Dunkl-type BMOBMO space under the uniform boundedness assumption of Dunkl translations. The proof and the definition in Dunkl setting will be harder than in the classical case for the lack of some similar properties of Dunkl translations to that of classical translations. We will also extend the preciseness of the description of support of Dunkl translations on characteristic functions by Gallardo and Rejeb to that on all nonnegative radial functions in L2(mk)L^2(m_k).Comment: 12 pages;accepted for publication in Functional Analysis and its Applications after some minor revision

    A strategy for a university cafe during holidays

    Get PDF
    With no existing strategy for a cafe business and a highly competitive market, the organisation requires a planned strategy. This research proposes to research a café to determine the best strategy for the organisation. A questionnaire will collect quantitative and qualitative data and the organisation will be observed to determine business strategies

    Generic Secure Repair for Distributed Storage

    Get PDF
    This paper studies the problem of repairing secret sharing schemes, i.e., schemes that encode a message into nn shares, assigned to nn nodes, so that any n−rn-r nodes can decode the message but any colluding zz nodes cannot infer any information about the message. In the event of node failures so that shares held by the failed nodes are lost, the system needs to be repaired by reconstructing and reassigning the lost shares to the failed (or replacement) nodes. This can be achieved trivially by a trustworthy third-party that receives the shares of the available nodes, recompute and reassign the lost shares. The interesting question, studied in the paper, is how to repair without a trustworthy third-party. The main issue that arises is repair security: how to maintain the requirement that any colluding zz nodes, including the failed nodes, cannot learn any information about the message, during and after the repair process? We solve this secure repair problem from the perspective of secure multi-party computation. Specifically, we design generic repair schemes that can securely repair any (scalar or vector) linear secret sharing schemes. We prove a lower bound on the repair bandwidth of secure repair schemes and show that the proposed secure repair schemes achieve the optimal repair bandwidth up to a small constant factor when nn dominates zz, or when the secret sharing scheme being repaired has optimal rate. We adopt a formal information-theoretic approach in our analysis and bounds. A main idea in our schemes is to allow a more flexible repair model than the straightforward one-round repair model implicitly assumed by existing secure regenerating codes. Particularly, the proposed secure repair schemes are simple and efficient two-round protocols

    Approximations of Shannon Mutual Information for Discrete Variables with Applications to Neural Population Coding

    Full text link
    Although Shannon mutual information has been widely used, its effective calculation is often difficult for many practical problems, including those in neural population coding. Asymptotic formulas based on Fisher information sometimes provide accurate approximations to the mutual information but this approach is restricted to continuous variables because the calculation of Fisher information requires derivatives with respect to the encoded variables. In this paper, we consider information-theoretic bounds and approximations of the mutual information based on Kullback--Leibler divergence and R\'{e}nyi divergence. We propose several information metrics to approximate Shannon mutual information in the context of neural population coding. While our asymptotic formulas all work for discrete variables, one of them has consistent performance and high accuracy regardless of whether the encoded variables are discrete or continuous. We performed numerical simulations and confirmed that our approximation formulas were highly accurate for approximating the mutual information between the stimuli and the responses of a large neural population. These approximation formulas may potentially bring convenience to the applications of information theory to many practical and theoretical problems.Comment: 31 pages, 6 figure

    On the Asymptotic Efficiency of Approximate Bayesian Computation Estimators

    Get PDF
    Many statistical applications involve models for which it is difficult to evaluate the likelihood, but from which it is relatively easy to sample. Approximate Bayesian computation is a likelihood-free method for implementing Bayesian inference in such cases. We present results on the asymptotic variance of estimators obtained using approximate Bayesian computation in a large-data limit. Our key assumption is that the data are summarized by a fixed-dimensional summary statistic that obeys a central limit theorem. We prove asymptotic normality of the mean of the approximate Bayesian computation posterior. This result also shows that, in terms of asymptotic variance, we should use a summary statistic that is the same dimension as the parameter vector, p; and that any summary statistic of higher dimension can be reduced, through a linear transformation, to dimension p in a way that can only reduce the asymptotic variance of the posterior mean. We look at how the Monte Carlo error of an importance sampling algorithm that samples from the approximate Bayesian computation posterior affects the accuracy of estimators. We give conditions on the importance sampling proposal distribution such that the variance of the estimator will be the same order as that of the maximum likelihood estimator based on the summary statistics used. This suggests an iterative importance sampling algorithm, which we evaluate empirically on a stochastic volatility model.Comment: Main text shortened and proof revised. To appear in Biometrik

    Connecting Multiple-unicast and Network Error Correction: Reduction and Unachievability

    Full text link
    We show that solving a multiple-unicast network coding problem can be reduced to solving a single-unicast network error correction problem, where an adversary may jam at most a single edge in the network. Specifically, we present an efficient reduction that maps a multiple-unicast network coding instance to a network error correction instance while preserving feasibility. The reduction holds for both the zero probability of error model and the vanishing probability of error model. Previous reductions are restricted to the zero-error case. As an application of the reduction, we present a constructive example showing that the single-unicast network error correction capacity may not be achievable, a result of separate interest.Comment: ISIT 2015. arXiv admin note: text overlap with arXiv:1410.190
    • …
    corecore