7 research outputs found
Putting the "I" in Interaction: interactive interfaces personalized to the individual
Interactive data exploration and analysis is an inherently personal process. One's background, experience, interests, cognitive style, personality, and other sociotechnical factors often shape such a process, as well as the provenance of exploring, analyzing, and interpreting data. This viewpoint posits both what personal information and how such personal information could be taken into account to design more effective visual analytic systems, a valuable and under-explored direction
A provenance task abstraction framework
Visual analytics tools integrate provenance recording to externalize analytic processes or user insights. Provenance can be captured on varying levels of detail, and in turn activities can be characterized from different granularities. However, current approaches do not support inferring activities that can only be characterized across multiple levels of provenance. We propose a task abstraction framework that consists of a three stage approach, composed of (1) initializing a provenance task hierarchy, (2) parsing the provenance hierarchy by using an abstraction mapping mechanism, and (3) leveraging the task hierarchy in an analytical tool. Furthermore, we identify implications to accommodate iterative refinement, context, variability, and uncertainty during all stages of the framework. A use case describes exemplifies our abstraction framework, demonstrating how context can influence the provenance hierarchy to support analysis. The paper concludes with an agenda, raising and discussing challenges that need to be considered for successfully implementing such a framework
A novel approach to task abstraction to make better sense of provenance data
Working Group Report in 'Provenance and Logging for Sense Making' report from Dagstuhl Seminar 18462: Provenance and Logging for Sense Making, Dagstuhl Reports, Volume 8, Issue 1
FixingTIM: Interactive exploration of sequence and structural data to identify functional mutations in protein families
Background: Knowledge of the 3D structure and functionality of proteins can lead to insight into the associated cellular processes, speed up the creation of pharmaceutical products, and develop drugs that are more effective in combating disease. Methods: We present the design and implementation of a visual mining and analysis tool to help identify protein mutations across a family of structural models and to help discover the effect of these mutations on protein function. We integrate 3D structure and sequence information in a common visual interface; multiple linked views and a computational backbone allow comparison at the molecular and atomic levels, while a novel trend-image visual abstraction allows for the sorting and mining of large collections of sequences and of their residues. Results: We evaluate our approach on the triosephosphate isomerase (TIM) family structural models and sequence data and show that our tool provides an effective, scalable way to navigate a family of proteins, as well as a means to inspect the structure and sequence of individual proteins. Conclusions: The TIM application shows that our tool can assist in the navigation of families of proteins, as well as in the exploration of individual protein structures. In conjunction with domain expert knowledge, this interactive tool can help provide biophysical insight into why specific mutations affect function and potentially suggest additional modifications to the protein that could be used to rescue functionality
Making machine intelligence less scary for criminal analysts: reflections on designing a visual comparative case analysis tool
A fundamental task in Criminal Intelligence Analysis is to analyze the similarity of crime cases, called CCA, to identify common crime patterns and to reason about unsolved crimes. Typically, the data is complex and high dimensional and the use of complex analytical processes would be appropriate. State-of-the-art CCA tools lack flexibility in interactive data exploration and fall short of computational transparency in terms of revealing alternative methods and results. In this paper, we report on the design of the Concept Explorer, a flexible, transparent and interactive CCA system. During this design process, we observed that most criminal analysts are not able to understand the underlying complex technical processes, which decrease the users' trust in the results and hence a reluctance to use the tool}. Our CCA solution implements a computational pipeline together with a visual platform that allows the analysts to interact with each stage of the analysis process and to validate the result. The proposed Visual Analytics workflow iteratively supports the interpretation of the results of clustering with the respective feature relations, the development of alternative models, as well as cluster verification. The visualizations offer an understandable and usable way for the analyst to provide feedback to the system and to observe the impact of their interactions. Expert feedback confirmed that our user-centred design decisions made this computational complexity less scary to criminal analysts
Survey on the analysis of user interactions and visualization provenance
There is fast-growing literature on provenance-related research, covering aspects such as its theoretical framework, use cases, and techniques for capturing, visualizing, and analyzing provenance data. As a result, there is an increasing need to identify and taxonomize the existing scholarship. Such an organization of the research landscape will provide a complete picture of the current state of inquiry and identify knowledge gaps or possible avenues for further investigation. In this STAR, we aim to produce a comprehensive survey of work in the data visualization and visual analytics field that focus on the analysis of user interaction and provenance data. We structure our survey around three primary questions: (1) WHY analyze provenance data, (2) WHAT provenance data to encode and how to encode it, and (3) HOW to analyze provenance data. A concluding discussion provides evidence-based guidelines and highlights concrete opportunities for future development in this emerging area. The survey and papers discussed can be explored online interactively at https://provenance-survey.caleydo.org
Strategy-Driven Exploration for Rule-Based Models of Biochemical Systems with Porgy
International audienceThis chapter presents Porgy—an interactive visual environment for rule-based modelling of biochemical systems. We model molecules and molecule interactions as port graphs and port graph rewrite rules, respectively. We use rewriting strategies to control which rules to apply, and where and when to apply them. Our main contributions to rule-based modelling of biochemical systems lie in the strategy language and the associated visual and interactive features offered by Porgy. These features facilitate an exploratory approach to test different ways of applying the rules while recording the model evolution, and tracking and plotting parameters. We illustrate Porgy’s features with a study of the role of a scaffold protein in RAF/MEK/ERK signalling