33 research outputs found

    Defining Key Genes Regulating Morphogenesis of Apocrine Sweat Gland in Sheepskin

    Get PDF
    The apocrine sweat gland is a unique skin appendage in humans compared to mouse and chicken models. The absence of apocrine sweat glands in chicken and murine skin largely restrains further understanding of the complexity of human skin biology and skin diseases, like hircismus. Sheep may serve as an additional system for skin appendage investigation owing to the distributions and histological similarities between the apocrine sweat glands of sheep trunk skin and human armpit skin. To understand the molecular mechanisms underlying morphogenesis of apocrine sweat glands in sheepskin, transcriptome analyses were conducted to reveal 1631 differentially expressed genes that were mainly enriched in three functional groups (cellular component, molecular function and biological process), particularly in gland, epithelial, hair follicle and skin development. There were 7 Gene Ontology (GO) terms enriched in epithelial cell migration and morphogenesis of branching epithelium that were potentially correlated with the wool follicle peg elongation. An additional 5 GO terms were enriched in gland morphogenesis (20 genes), gland development (42 genes), salivary gland morphogenesis and development (8 genes), branching involved in salivary gland morphogenesis (6 genes) and mammary gland epithelial cell differentiation (4 genes). The enriched gland-related genes and two Kyoto Encyclopedia of Genes and Genomes pathway genes (WNT and TGF-β) were potentially involved in the induction of apocrine sweat glands. Genes named BMPR1A, BMP7, SMAD4, TGFB3, WIF1, and WNT10B were selected to validate transcript expression by qRT-PCR. Immunohistochemistry was performed to localize markers for hair follicle (SOX2), skin fibroblast (PDGFRB), stem cells (SOX9) and BMP signaling (SMAD5) in sheepskin. SOX2 and PDGFRB were absent in apocrine sweat glands. SOX9 and SMAD5 were both observed in precursor cells of apocrine sweat glands and later in gland ducts. These results combined with the upregulation of BMP signaling genes indicate that apocrine sweat glands were originated from outer root sheath of primary wool follicle and positively regulated by BMP signaling. This report established the primary network regulating early development of apocrine sweat glands in sheepskin and will facilitate the further understanding of histology and pathology of apocrine sweat glands in human and companion animal skin

    Plasma metabonomics of classical swine fever virus-infected pigs

    Get PDF
    Classical swine fever (CSF) is an infectious disease caused by Classical swine fever virus (CSFV), which is characterized by depression, high fever, extensive skin bleeding, leukopenia, anorexia, alternating constipation, and diarrhea. Hemorrhagic infarction of the spleen is the main characteristic pathological change following CSFV infection. Large-scale outbreaks of CSF are rare in China and are mainly distributed regionally. The clinical symptoms of CSF are not obvious, and show variation from typical to atypical symptoms, which makes diagnosis based on clinical symptoms and pathology challenging. In recent years, the incidence of CSF-immunized pig farms in China has increased and new CSFV gene subtypes have appeared, posing new challenges to the prevention and control of CSF in China. Changes in metabolites caused by viral infection reflect the pathogenic process. Metabonomics can reveal the trace metabolites of organisms; however, plasma metabonomics of CSFV-infected pigs have rarely been investigated. Therefore, we used an established pig CSFV infection model to study changes in plasma metabolites. The results showed significant differences in forty-five plasma metabolites at different time periods after CSFV infection in pigs, with an increase in twenty-five metabolites and a decrease in twenty metabolites. These changed metabolites were mainly attributed to the tricarboxylic acid cycle, amino acid cycle, sugar metabolism, and fat metabolism. Thirteen metabolic pathways changed significantly in CSFV-infected pigs, including tricarboxylic acid cycle, inositol phosphate metabolism, glycine, serine and threonine metabolism,lysine degradation, alanine, aspartate and glutamic acid metabolism, pantothenate and CoA biosynthesis, β-alanine metabolism, lysine degradation, arginine and proline metabolism, glycerolipid metabolism, phenylalanine metabolism, arachidonic acid metabolism, linoleic acid metabolism. Among these, changes in fatty acid biosynthesis and metabolism occurred at all time periods post-infection. These results indicate that CSFV infection in pigs could seriously alter metabolic pathways

    Genetic Epidemiology of Glioblastoma Multiforme: Confirmatory and New Findings from Analyses of Human Leukocyte Antigen Alleles and Motifs

    Get PDF
    Human leukocyte antigen (HLA) class I genes mediate cytotoxic T-lymphocyte responses and natural killer cell function. In a previous study, several HLA-B and HLA-C alleles and haplotypes were positively or negatively associated with the occurrence and prognosis of glioblastoma multiforme (GBM).As an extension of the Upper Midwest Health Study, we have performed HLA genotyping for 149 GBM patients and 149 healthy control subjects from a non-metropolitan population consisting almost exclusively of European Americans. Conditional logistic regression models did not reproduce the association of HLA-B*07 or the B*07-Cw*07 haplotype with GBM. Nonetheless, HLA-A*32, which has previously been shown to predispose GBM patients to a favorable prognosis, was negatively associated with occurrence of GBM (odds ratio=0.41, p=0.04 by univariate analysis). Other alleles (A*29, A*30, A*31 and A*33) within the A19 serology group to which A*32 belongs showed inconsistent trends. Sequencing-based HLA-A genotyping established that A*3201 was the single A*32 allele underlying the observed association. Additional evaluation of HLA-A promoter and exon 1 sequences did not detect any unexpected single nucleotide polymorphisms that could suggest differential allelic expression. Further analyses restricted to female GBM cases and controls revealed a second association with a specific HLA-B sequence motif corresponding to Bw4-80Ile (odds ratio=2.71, p=0.02).HLA-A allelic product encoded by A*3201 is likely to be functionally important to GBM. The novel, sex-specific association will require further confirmation in other representative study populations

    Study on Adsorption of Dye Wastewater by Modified Fly Ash

    No full text
    Used fly ash as raw material, it was modified by acid, alkali and high temperature to produce modified fly ash adsorbent, sulfuric acid modified fly ash adsorbent, sodium hydroxide modified fly ash adsorbent and high temperature modified fly ash adsorbent. In this paper, the effects of adsorbent dosage, adsorbent adsorption time, initial dye concentration, wastewater pH and temperature on dye adsorption were studied. The results showed that: the acid modified fly ash adsorbent had a good treatment effect on the dye; when the dosage of fly ash was 1.00 g, the adsorption time was 90 min, the pH of wastewater was 4, and the temperature was 45 °C, the decolorization rate of 60 mg/L methyl orange dye can reached more than 70%; when the dosage of fly ash was 0.20 g, the adsorption time was 60 min, the pH of wastewater was 3, and the temperature was 35 °C, the decolorization rate of 20 mg/L methyl orange dye can be achieved. The decolorization rate of Congo red can reached more than 80%

    Ag+ colorimetric sensor based on graphene oxide/nano-platinum composite

    No full text
    Abstract With the development of society, pollution accidents occur more frequently, and the effects of toxic substances containing silver on human health and environment are increasingly extensive. Therefore, the real-time on-site monitoring of silver ions is urgently needed. Based on the catalase-like properties of graphene/nano-platinum composites and the coupling effect between Pt and Ag+, a simple, unlabeled colorimetric sensing method is proposed to achieve the quantitative detection of Ag+. Under optimal conditions, the detection range of Ag+ by this colorimetric sensing method is 0.5–1000 μM, and the detection limit is 0.5 μM, which is lower than the previously reported detection limit of unlabeled Ag+ colorimetric sensing method, showing higher sensitivity and detection range. Under the same conditions, the sensor has almost no response to interference ions, showing good specific recognition ability. In addition, the colorimetric sensing method can be used to detect Ag+ in actual water samples, serving as a new paradigm for visual detection of Ag+. Graphical abstrac

    An Updated Method for Stability Analysis of Milling Process with Multiple and Distributed Time Delays and Its Application

    No full text
    Predicting and avoiding the onset of milling chatter are desirable to reduce its harm to machine tools, workpieces, and cutters. This paper presents an updated method to complete the stability prediction for the milling process with multiple and distributed time delays. After the dynamic of the combination milling process with variable helix cutter (VHC) and variable spindle speed (VSS) is modeled as linear delay differential equations with multiple and distributed time delays, the presented method is applied to carrying out its stability prediction for the first time. By comparing with the existing researches and time-domain simulations, the effectiveness of the presented method has been validated. The influence and feasibility of the combination process on chatter suppression are explored and investigated for the associated one- and two-degree-of-freedom systems. Results show that the application of the combination process can realize a further suppression of milling chatter in practice. It can result in nearly 2-fold as high as the minimum depth of cut for the traditional milling or VSS milling and about 1.3-fold for VHC milling for some special domain, and can respectively lead to the average increase of stable area by 30.4%, 23.5%, and 1.5% for the adopted simulations. However, consider the contribution, the combination process is actually one process in which VHC plays an absolutely leading role but VSS plays an auxiliary role, in terms of milling stability

    Improvement in activity and alkali resistance of a novel V-Ce(SO4)2/Ti catalyst for selective catalytic reduction of NO with NH3

    No full text
    A series of V-Ce(SO4)2/Ti catalysts for selective catalytic reduction (SCR) of NO with ammonia are prepared by impregnation method. Low temperature SCR activity and alkali resistance of the optimal V-0.5Ce(SO4)2/Ti sample are found to be better than on the commercial V-W/Ti catalyst. Also, V-0.5Ce(SO4)2/Ti shows an excellent durability in the presence of SO2 and H2O, indicating to have prospects for the industrial application. Based on catalysts characterization and in-situ DRIFTS studies, a higher proportion of surface active oxygen generated by the introduction of Ce and a much faster H2 reduction point out the improved redox properties of V-0.5Ce(SO4)2/Ti, which results in a stronger NO oxidative activation and is confirmed by a more abundant formation of surface NO+ and NO3− species. When exposed to SCR conditions where both NH3 and NO are present, this enhanced NO activation can produce more reactive nitrite and/or NO+ intermediates which then readily react with adsorbed NH3 and decompose to N2 and H2O, accounting for the improved SCR activity of V-0.5Ce(SO4)2/Ti at low temperatures. The addition of Ce(SO4)2 also provides abundant reactive acid sites and adsorbed NH3 species thus increase. Even after Na poisoning, adequate surface acidity and redox properties still remain. Furthermore, relatively higher contents of V-OH are preserved owing to the interaction between Na and O[dbnd]S[dbnd]O, acting as a protection for the active sites. These promotional effects contribute to the better alkali resistance of V-0.5Ce(SO4)2/Ti. Therefore, all the results suggest that V-0.5Ce(SO4)2/Ti is a promising candidate as a catalyst for NH3-SCR in coal-fired power plants, especially under high Na-content conditions

    Revisiting dispersion and reactivity of active sites via a restricted random distribution model over supported vanadia catalysts for NO reduction

    Get PDF
    The structure and dispersion of active sites substantially impact the performance of supported metal oxide catalysts, as exemplified by the V2O5/TiO2 catalysts used for NH3-SCR reaction. Due to the complexity of the active site dispersion on the catalyst surface, the intrinsic law of this structure–activity relationship remains controversial. Herein, we proposed a restricted random distribution model to describe the stochastic anchoring behavior of active sites on the TiO2 surface during the loading process of vanadia. The structures of monomeric, dimeric, and polymeric VOx sites were determined by DFT calculations and verified with spectroscopy and adsorption information experimentally. The calculated reaction pathways and energy profiles for these structures indicated that the dual sites configuration and terminal V(=O)2 bond are responsible for the high reactivity of aggregated VOx sites. Combining the reactivity of these various sites and the random distribution method, we built a general profile of the correlation between the V2O5/TiO2 catalyst surface and its reaction performance. The reactivity results obtained from experimental in situ DRIFTS and kinetic tests validate our theoretical model. The random distribution method links DFT calculations and experiments, coupling the structure and dispersion of the VOx active sites to the catalyst reactivity
    corecore