220 research outputs found
Super-resolution Microscopy Reveals Photoreceptor-Specific Subciliary Location and Function of Ciliopathy-Associated Protein CEP290
Mutations in the cilium-associated protein CEP290 cause retinal degeneration as part of multiorgan ciliopathies or as retina-specific diseases. The precise location and the functional roles of CEP290 within cilia and, specifically, the connecting cilia (CC) of photoreceptors, remain unclear. We used super-resolution fluorescence microscopy and electron microscopy to localize CEP290 in the CC and in the primary cilia of cultured cells with subdiffraction resolution and to determine effects of CEP290 deficiency in 3 mutant models. Radially, CEP290 localizes in close proximity to the microtubule doublets in the region between the doublets and the ciliary membrane. Longitudinally, it is distributed throughout the length of the CC whereas it is confined to the very base of primary cilia in human retinal pigment epithelium-1 cells. We found Y-shaped links, ciliary substructures between microtubules and membrane, throughout the length of the CC. Severe CEP290 deficiencies in mouse models did not prevent assembly of cilia or cause obvious mislocalization of ciliary components in early stages of degeneration. There were fewer cilia and no normal outer segments in the mutants, but the Y-shaped links were clearly present. These results point to photoreceptor-specific functions of CEP290 essential for CC maturation and stability following the earliest stages of ciliogenesis
Centriole and Transition Zone Structures in Photoreceptor Cilia Revealed by Cryo-Electron Tomography
Primary cilia mediate sensory signaling in multiple organisms and cell types but have structures adapted for specific roles. Structural defects in them lead to devastating diseases known as ciliopathies in humans. Key to their functions are structures at their base: the basal body, the transition zone, the Y-shaped links, and the ciliary necklace. We have used cryo-electron tomography with subtomogram averaging and conventional transmission electron microscopy to elucidate the structures associated with the basal region of the connecting cilia of rod outer segments in mouse retina. The longitudinal variations in microtubule (MT) structures and the lumenal scaffold complexes connecting them have been determined, as well as membrane-associated transition zone structures: Y-shaped links connecting MT to the membrane, and ciliary beads connected to them that protrude from the cell surface and form a necklace-like structure. These results represent a clearer structural scaffold onto which molecules identified by genetics, proteomics, and superresolution fluorescence can be placed in our emerging model of photoreceptor sensory cilia
Influence of the incremental step size in work rate on exercise response and gas exchange in patients with pulmonary hypertension
<p>Abstract</p> <p>Background</p> <p>Cardiopulmonary exercise testing (CPET) has become increasingly important as a routine procedure in daily clinical work. So far, it is generally accepted that an individualized exercise protocol with exercise duration of 6 to 12 minutes is preferable to assess maximal exercise performance. The aim of this study was to compare an individualized NYHA adapted exercise protocol with a fixed standard protocol in patients with severe pulmonary arterial hypertension.</p> <p>Methods</p> <p>Twenty-two patients (17 female, 5 male; mean age 49 ± 14 yrs) underwent symptom limited CPET on a bicycle. On two consecutive days each subject performed a stepwise CPET according to a modified Jones protocol (16 Watt per minute stages) as well as an individualized NYHA adapted protocol with 5 or 10 Watt/min stages in a randomized order. Oxygen uptake at peak exercise (peakVO<sub>2</sub>) and anaerobic threshold (VO<sub>2</sub>AT), maximal ventilation (VE), breathing reserve (VE/MVV), ventilatory efficiency (VE vs. VCO<sub>2 </sub>slope), exercise time, maximal power and work rate were assessed and compared between both protocols.</p> <p>Results</p> <p>Comparing both, adapted NYHA protocol and standardized Jones protocol, we found significant differences in maximal power (56.7 ± 19 W vs. 74 ± 18 W; p < 0.001) and exercise time (332 ± 107 sec. vs. 248 ± 72 sec.; p < 0.001). In contrast, no significant differences were obvious comparing both protocols concerning work rate, VE, VE/MVV, peakVO<sub>2</sub>, VO<sub>2</sub>AT and VE vs. VCO<sub>2 </sub>slope.</p> <p>Conclusion</p> <p>Variations of incremental step size during CPET significantly affect exercise time and maximal power, whereas relevant parameters for clinical judgement and prognosis such as oxygen uptake, ventilation and ventilatory efficiency remain unchanged. These findings have practical implications for the exercise evaluation of patients with pulmonary hypertension. To reach maximal results for ventilation, oxygen uptake and gas exchange an individualization of incremental step size appears not to be mandatory.</p
An ELF4 Hypomorphic Variant Results in NK Cell Deficiency
NK cell deficiencies (NKD) are a type of primary immune deficiency in which the major immunologic abnormality affects NK cell number, maturity, or function. Since NK cells contribute to immune defense against virally infected cells, patients with NKD experience higher susceptibility to chronic, recurrent, and fatal viral infections. An individual with recurrent viral infections and mild hypogammaglobulinemia was identified to have an X-linked damaging variant in the transcription factor gene ELF4. The variant does not decrease expression but disrupts ELF4 protein interactions and DNA binding, reducing transcriptional activation of target genes and selectively impairing ELF4 function. Corroborating previous murine models of ELF4 deficiency (Elf4-/-) and using a knockdown human NK cell line, we determined that ELF4 is necessary for normal NK cell development, terminal maturation, and function. Through characterization of the NK cells of the proband, expression of the proband\u27s variant in Elf4-/- mouse hematopoietic precursor cells, and a human in vitro NK cell maturation model, we established this ELF4 variant as a potentially novel cause of NKD
Percutaneous coronary intervention in stable angina (ORBITA): a double-blind, randomised controlled trial
Background:
Symptomatic relief is the primary goal of percutaneous coronary intervention (PCI) in stable angina and is commonly observed clinically. However, there is no evidence from blinded, placebo-controlled randomised trials to show its efficacy.
Methods:
ORBITA is a blinded, multicentre randomised trial of PCI versus a placebo procedure for angina relief that was done at five study sites in the UK. We enrolled patients with severe (≥70%) single-vessel stenoses. After enrolment, patients received 6 weeks of medication optimisation. Patients then had pre-randomisation assessments with cardiopulmonary exercise testing, symptom questionnaires, and dobutamine stress echocardiography. Patients were randomised 1:1 to undergo PCI or a placebo procedure by use of an automated online randomisation tool. After 6 weeks of follow-up, the assessments done before randomisation were repeated at the final assessment. The primary endpoint was difference in exercise time increment between groups. All analyses were based on the intention-to-treat principle and the study population contained all participants who underwent randomisation. This study is registered with ClinicalTrials.gov, number NCT02062593.
Findings:
ORBITA enrolled 230 patients with ischaemic symptoms. After the medication optimisation phase and between Jan 6, 2014, and Aug 11, 2017, 200 patients underwent randomisation, with 105 patients assigned PCI and 95 assigned the placebo procedure. Lesions had mean area stenosis of 84·4% (SD 10·2), fractional flow reserve of 0·69 (0·16), and instantaneous wave-free ratio of 0·76 (0·22). There was no significant difference in the primary endpoint of exercise time increment between groups (PCI minus placebo 16·6 s, 95% CI −8·9 to 42·0, p=0·200). There were no deaths. Serious adverse events included four pressure-wire related complications in the placebo group, which required PCI, and five major bleeding events, including two in the PCI group and three in the placebo group.
Interpretation:
In patients with medically treated angina and severe coronary stenosis, PCI did not increase exercise time by more than the effect of a placebo procedure. The efficacy of invasive procedures can be assessed with a placebo control, as is standard for pharmacotherapy
Assessment of Daily Life Physical Activities in Pulmonary Arterial Hypertension
Background: In pulmonary arterial hypertension (PAH), the six-minute walk test (6MWT) is believed to be representative of patient’s daily life physical activities (DLPA). Whether DLPA are decreased in PAH and whether the 6MWT is representative of patient’s DL PA remain unknown. Methods: 15 patients with idiopathic PAH (IPAH) and 10 patients with PAH associated with limited systemic sclerosis (PAH-SSc) were matched with 15 healthy control subjects and 10 patients with limited systemic sclerosis without PAH. Each subject completed a 6MWT. The mean number of daily steps and the mean energy expenditure and duration of physical activities.3 METs were assessed with a physical activity monitor for seven consecutive days and used as markers of DLPA. Results: The mean number of daily steps and the mean daily energy expenditure and duration of physical activities.3 METs were all reduced in PAH patients compared to their controls (all p,0.05). The mean number of daily steps correlated with the 6MWT distance for both IPAH and PAH-SSc patients (r = 0.76, p,0.01 and r = 0.85, p,0.01), respectively. Conclusion: DLPA are decreased in PAH and correlate with the 6MWT distance. Functional exercise capacity may thus be a useful surrogate of DL PA in PAH
Discussion on the thermal conductivity enhancement of nanofluids
Increasing interests have been paid to nanofluids because of the intriguing heat transfer enhancement performances presented by this kind of promising heat transfer media. We produced a series of nanofluids and measured their thermal conductivities. In this article, we discussed the measurements and the enhancements of the thermal conductivity of a variety of nanofluids. The base fluids used included those that are most employed heat transfer fluids, such as deionized water (DW), ethylene glycol (EG), glycerol, silicone oil, and the binary mixture of DW and EG. Various nanoparticles (NPs) involving Al2O3 NPs with different sizes, SiC NPs with different shapes, MgO NPs, ZnO NPs, SiO2 NPs, Fe3O4 NPs, TiO2 NPs, diamond NPs, and carbon nanotubes with different pretreatments were used as additives. Our findings demonstrated that the thermal conductivity enhancements of nanofluids could be influenced by multi-faceted factors including the volume fraction of the dispersed NPs, the tested temperature, the thermal conductivity of the base fluid, the size of the dispersed NPs, the pretreatment process, and the additives of the fluids. The thermal transport mechanisms in nanofluids were further discussed, and the promising approaches for optimizing the thermal conductivity of nanofluids have been proposed
Distinct in vitro binding properties of the anti-CD20 small modular immunopharmaceutical 2LM20-4 result in profound and sustained in vivo potency in cynomolgus monkeys
Objectives. To characterize the in vitro binding and effector function properties of CD20-directed small modular immunopharmaceutical (SMIP) 2LM20-4, and to compare its in vivo B-cell depletion activity with the mutated 2LM20-4 P331S [no in vitro complement-dependent cytotoxicity (CDC)] and rituximab in cynomolgus monkeys
- …