412 research outputs found

    KINEMATIC ANALYSIS OF THE RUN UP FINAL STRIDE AND TAKE-OFF TECHNIQUE IN CHINESE FEMALE FOSBURY FLOP JUMPERS

    Get PDF
    The flop high-jump technique consists of a run up, take-off, flight and landing. Among these four phases, the take-off is the key to performance. The path that a jumper's center of gravity (CG) follows during flight is determined by the height of center of gravity before take-off, velocity that the athlete is propelled upward at take-off, and take-off angle. The run up will influence take-off technique and body movement in flight. Therefore, the final stride of the run up is the transitional phases connecting the run up and take-off. The purpose of this study was analyzed and estimated the final stride of the run up and kinematics of take-off technique used by Chinese female jumpers

    Watermarking for Neural Radiation Fields by Invertible Neural Network

    Full text link
    To protect the copyright of the 3D scene represented by the neural radiation field, the embedding and extraction of the neural radiation field watermark are considered as a pair of inverse problems of image transformations. A scheme for protecting the copyright of the neural radiation field is proposed using invertible neural network watermarking, which utilizes watermarking techniques for 2D images to achieve the protection of the 3D scene. The scheme embeds the watermark in the training image of the neural radiation field through the forward process in the invertible network and extracts the watermark from the image rendered by the neural radiation field using the inverse process to realize the copyright protection of both the neural radiation field and the 3D scene. Since the rendering process of the neural radiation field can cause the loss of watermark information, the scheme incorporates an image quality enhancement module, which utilizes a neural network to recover the rendered image and then extracts the watermark. The scheme embeds a watermark in each training image to train the neural radiation field and enables the extraction of watermark information from multiple viewpoints. Simulation experimental results demonstrate the effectiveness of the method

    Dynamical Behavior and Stability Analysis in a Hybrid Epidemiological-Economic Model with Incubation

    Get PDF
    A hybrid SIR vector disease model with incubation is established, where susceptible host population satisfies the logistic equation and the recovered host individuals are commercially harvested. It is utilized to discuss the transmission mechanism of infectious disease and dynamical effect of commercial harvest on population dynamics. Positivity and permanence of solutions are analytically investigated. By choosing economic interest of commercial harvesting as a parameter, dynamical behavior and local stability of model system without time delay are studied. It reveals that there is a phenomenon of singularity induced bifurcation as well as local stability switch around interior equilibrium when economic interest increases through zero. State feedback controllers are designed to stabilize model system around the desired interior equilibria in the case of zero economic interest and positive economic interest, respectively. By analyzing corresponding characteristic equation of model system with time delay, local stability analysis around interior equilibrium is discussed due to variation of time delay. Hopf bifurcation occurs at the critical value of time delay and corresponding limit cycle is also observed. Furthermore, directions of Hopf bifurcation and stability of the bifurcating periodic solutions are studied. Numerical simulations are carried out to show consistency with theoretical analysis

    Spatial and Temporal Variation of Soil Salinity During Dry and Wet Seasons in the Southern Coastal Area of Laizhou Bay, China

    Get PDF
    260-270The southern coastal area of Laizhou Bay is subjected to severe soil salinization due to saline groundwater. The degree of spatial variability is strongly affected by seasonal changes during an annual cycle. In this paper, the spatio-temporal variability of soil salinity in Laizhou Bay, China, was examined to ascertain the current situation of soil salinization in the study area and to reveal the characteristics of seasonal variation of soil salinity. The classical statistical methods and geostatistical methods were applied to soil salinity data collected from four soil layers, i.e., 0-30, 30-60, 60-90, and 0-100 cm, during summer and autumn in 2014. The results indicated that the variation of soil salinity of all the soil layers in summer and autumn was moderate. The soil salinity in the 0-30 cm layer showed a moderate spatial autocorrelation, whereas the spatial autocorrelations of soil salinity in other layers were strong. The overall spatial distribution of soil salinity showed a clear banding distribution and the degree of salinization in the eastern area was lower than that in the western and northern regions.A high ratio of evaporation/precipitation is one of the important reasons for the soil salinity in July is significantly higher than that in November. The rank of soil salinity under different land-use types was: salt pan > orchard > weeds > soybean > woods > cotton > maize > ginger > sweet potato. The research findings can provide theoretical guidance for accurate assessment and soil partition management of regional soil salinization

    Identification and characterization of the expression profile of microRNAs in Anopheles anthropophagus

    Get PDF
    BACKGROUND: Anopheles anthropophagus, one of the most important mosquito-borne disease vectors in Asia, mainly takes blood meals from humans and transmits both malaria and filariae. MicroRNAs (miRNAs) are small non-coding RNAs, and play a critical role in many cellular processes, including development, differentiation, apoptosis and innate immunity. METHODS: We investigated the global miRNA expression profile of male and female adults of A. anthropophagus using illumina Hiseq2000 sequencing combined with Northern blot. RESULTS: By using the miRNAs of the closely-related species Anopheles gambiae and Aedes aegypti as reference, we obtained 102 miRNAs candidates out of 12.43 million raw sequencing reads for male and 16.51 million reads for female, with 81 of them found as known miRNAs in An. gambiae and/or Ae. aegypti, and the remaining 21 miRNAs were considered as novel. By analyzing the revised read count of miRNAs in male and female, 29 known miRNAs show sexual difference expression: >2-fold in the read count of the same miRNAs in male and female. Especially for miR-989, which is highly expressed in the female mosquitoes, but shows almost no detected expression in male mosquitoes, indicating that miR-989 may be involved in the physiological activity of female mosquito adults. The expression of four miRNAs in different growth stages of mosquito were further identified by Northern blot. Several miRNAs show the stage-specific expression, of which miR-2943 only expressed in the egg stage, suggesting that miR-2943 may be associated with the development of mosquito eggs. CONCLUSIONS: The present study represents the first global characterization of An. anthropophagus miRNAs in sexual differences and stage-specific functions. A better understanding of the functions of these miRNAs will offer new insights in mosquito biology and has implications for the effective control of mosquito-borne infectious diseases

    Steganography for Neural Radiance Fields by Backdooring

    Full text link
    The utilization of implicit representation for visual data (such as images, videos, and 3D models) has recently gained significant attention in computer vision research. In this letter, we propose a novel model steganography scheme with implicit neural representation. The message sender leverages Neural Radiance Fields (NeRF) and its viewpoint synthesis capabilities by introducing a viewpoint as a key. The NeRF model generates a secret viewpoint image, which serves as a backdoor. Subsequently, we train a message extractor using overfitting to establish a one-to-one mapping between the secret message and the secret viewpoint image. The sender delivers the trained NeRF model and the message extractor to the receiver over the open channel, and the receiver utilizes the key shared by both parties to obtain the rendered image in the secret view from the NeRF model, and then obtains the secret message through the message extractor. The inherent complexity of the viewpoint information prevents attackers from stealing the secret message accurately. Experimental results demonstrate that the message extractor trained in this letter achieves high-capacity steganography with fast performance, achieving a 100\% accuracy in message extraction. Furthermore, the extensive viewpoint key space of NeRF ensures the security of the steganography scheme.Comment: 6 pages, 7 figure

    LoS Sensing-based Channel Estimation in UAV-Assisted OFDM Systems

    Full text link
    In unmanned aerial vehicle (UAV)-assisted orthogonal frequency division multiplexing (OFDM) systems, the potential advantage of the line-of-sight (LoS) path, characterized by its high probability of existence, has not been fully harnessed, thereby impeding the improvement of channel estimation (CE) accuracy. Inspired by the ideas of integrated sensing and communication (ISAC), this letter develops a LoS sensing method aimed at detecting the presence of LoS path. Leveraging the prior information obtained from LoS path detection, the detection thresholds for resolvable paths are proposed for LoS and Non-LoS (NLoS) scenarios, respectively. By employing these specifically designed detection thresholds, denoising processing is applied to classical least square (LS) CE, thereby improving the CE accuracy. Simulation results validate the effectiveness of the proposed method in enhancing CE accuracy and demonstrate its robustness against parameter variations
    corecore