460 research outputs found
Detecting objects using Rolling Convolution and Recurrent Neural Network
Abstract—At present, most of the existing target detection algorithms use the method of region proposal to search for the target in the image. The most effective regional proposal method usually requires thousands of target prediction areas to achieve high recall rate.This lowers the detection efficiency. Even though recent region proposal network approach have yielded good results by using hundreds of proposals, it still faces the challenge when applied to small objects and precise locations. This is mainly because these approaches use coarse feature. Therefore, we propose a new method for extracting more efficient global features and multi-scale features to provide target detection performance. Given that feature maps under continuous convolution lose the resolution required to detect small objects when obtaining deeper semantic information; hence, we use rolling convolution (RC) to maintain the high resolution of low-level feature maps to explore objects in greater detail, even if there is no structure dedicated to combining the features of multiple convolutional layers. Furthermore, we use a recurrent neural network of multiple gated recurrent units (GRUs) at the top of the convolutional layer to highlight useful global context locations for assisting in the detection of objects. Through experiments in the benchmark data set, our proposed method achieved 78.2% mAP in PASCAL VOC 2007 and 72.3% mAP in PASCAL VOC 2012 dataset. It has been verified through many experiments that this method has reached a more advanced level of detection
Detecting objects using Rolling Convolution and Recurrent Neural Network
Abstract—At present, most of the existing target detection algorithms use the method of region proposal to search for the target in the image. The most effective regional proposal method usually requires thousands of target prediction areas to achieve high recall rate.This lowers the detection efficiency. Even though recent region proposal network approach have yielded good results by using hundreds of proposals, it still faces the challenge when applied to small objects and precise locations. This is mainly because these approaches use coarse feature. Therefore, we propose a new method for extracting more efficient global features and multi-scale features to provide target detection performance. Given that feature maps under continuous convolution lose the resolution required to detect small objects when obtaining deeper semantic information; hence, we use rolling convolution (RC) to maintain the high resolution of low-level feature maps to explore objects in greater detail, even if there is no structure dedicated to combining the features of multiple convolutional layers. Furthermore, we use a recurrent neural network of multiple gated recurrent units (GRUs) at the top of the convolutional layer to highlight useful global context locations for assisting in the detection of objects. Through experiments in the benchmark data set, our proposed method achieved 78.2% mAP in PASCAL VOC 2007 and 72.3% mAP in PASCAL VOC 2012 dataset. It has been verified through many experiments that this method has reached a more advanced level of detection
Multi-frame Image Super-resolution Reconstruction Using Multi-grained Cascade Forest
Super-resolution image reconstruction utilizes two algorithms, where one is for single-frame image reconstruction, and the other is for multi-frame image reconstruction. Single-frame image reconstruction generally takes the first degradation and is followed by reconstruction, which essentially creates a problem of insufficient characterization. Multi-frame images provide additional information for image reconstruction relative to single frame images due to the slight differences between sequential frames. However, the existing super-resolution algorithm for multi-frame images do not take advantage of this key factor, either because of loose structure and complexity, or because the individual frames are restored poorly. This paper proposes a new SR reconstruction algorithm for images using Multi-grained Cascade Forest. Multi-frame image reconstruction is processed sequentially. Firstly, the image registration algorithm uses a convolutional neural network to register low-resolution image sequences, and then the images are reconstructed after registration by the Multi-grained Cascade Forest reconstruction algorithm. Finally, the reconstructed images are fused. The optimal algorithm is selected for each step to get the most out of the details and tightly connect the internal logic of each sequential step.This novel approach proposed in this paper, in which the depth of the cascade forest is procedurally generated for recovered images, rather than being a constant. After training each layer, the recovered image is automatically evaluated, and new layers are constructed for training until an optimal restored image is obtained. Experiments show that this method improves the quality of image reconstruction while preserving the details of the image
Multi-frame Image Super-resolution Reconstruction Using Multi-grained Cascade Forest
Super-resolution image reconstruction utilizes two algorithms, where one is for single-frame image reconstruction, and the other is for multi-frame image reconstruction. Single-frame image reconstruction generally takes the first degradation and is followed by reconstruction, which essentially creates a problem of insufficient characterization. Multi-frame images provide additional information for image reconstruction relative to single frame images due to the slight differences between sequential frames. However, the existing super-resolution algorithm for multi-frame images do not take advantage of this key factor, either because of loose structure and complexity, or because the individual frames are restored poorly. This paper proposes a new SR reconstruction algorithm for images using Multi-grained Cascade Forest. Multi-frame image reconstruction is processed sequentially. Firstly, the image registration algorithm uses a convolutional neural network to register low-resolution image sequences, and then the images are reconstructed after registration by the Multi-grained Cascade Forest reconstruction algorithm. Finally, the reconstructed images are fused. The optimal algorithm is selected for each step to get the most out of the details and tightly connect the internal logic of each sequential step.This novel approach proposed in this paper, in which the depth of the cascade forest is procedurally generated for recovered images, rather than being a constant. After training each layer, the recovered image is automatically evaluated, and new layers are constructed for training until an optimal restored image is obtained. Experiments show that this method improves the quality of image reconstruction while preserving the details of the image
You Only Transfer What You Share: Intersection-Induced Graph Transfer Learning for Link Prediction
Link prediction is central to many real-world applications, but its
performance may be hampered when the graph of interest is sparse. To alleviate
issues caused by sparsity, we investigate a previously overlooked phenomenon:
in many cases, a densely connected, complementary graph can be found for the
original graph. The denser graph may share nodes with the original graph, which
offers a natural bridge for transferring selective, meaningful knowledge. We
identify this setting as Graph Intersection-induced Transfer Learning (GITL),
which is motivated by practical applications in e-commerce or academic
co-authorship predictions. We develop a framework to effectively leverage the
structural prior in this setting. We first create an intersection subgraph
using the shared nodes between the two graphs, then transfer knowledge from the
source-enriched intersection subgraph to the full target graph. In the second
step, we consider two approaches: a modified label propagation, and a
multi-layer perceptron (MLP) model in a teacher-student regime. Experimental
results on proprietary e-commerce datasets and open-source citation graphs show
that the proposed workflow outperforms existing transfer learning baselines
that do not explicitly utilize the intersection structure.Comment: Accepted in TMLR (https://openreview.net/forum?id=Nn71AdKyYH
Capacity Constrained Influence Maximization in Social Networks
Influence maximization (IM) aims to identify a small number of influential
individuals to maximize the information spread and finds applications in
various fields. It was first introduced in the context of viral marketing,
where a company pays a few influencers to promote the product. However, apart
from the cost factor, the capacity of individuals to consume content poses
challenges for implementing IM in real-world scenarios. For example, players on
online gaming platforms can only interact with a limited number of friends. In
addition, we observe that in these scenarios, (i) the initial adopters of
promotion are likely to be the friends of influencers rather than the
influencers themselves, and (ii) existing IM solutions produce sub-par results
with high computational demands. Motivated by these observations, we propose a
new IM variant called capacity constrained influence maximization (CIM), which
aims to select a limited number of influential friends for each initial adopter
such that the promotion can reach more users. To solve CIM effectively, we
design two greedy algorithms, MG-Greedy and RR-Greedy, ensuring the
-approximation ratio. To improve the efficiency, we devise the scalable
implementation named RR-OPIM+ with -approximation and
near-linear running time. We extensively evaluate the performance of 9
approaches on 6 real-world networks, and our solutions outperform all
competitors in terms of result quality and running time. Additionally, we
deploy RR-OPIM+ to online game scenarios, which improves the baseline
considerably.Comment: The technical report of the paper entitled 'Capacity Constrained
Influence Maximization in Social Networks' in SIGKDD'2
- …