105 research outputs found

    Effect of the Duration of Electromagnetic Pulse Force on the Rebound Suppression in V-Bending Experiment

    Get PDF
    Electromagnetic Forming (EMF) is one of the high speed forming technologies. The spatial distribution and temporal evolution of electromagnetic body force and the constraint imposed by the die on the sheet metal, are key factors which influence the dynamic deformation behaviour of sheet metal. The great force induced by the collision at high speed of the sheet and the die causes the rebound of the sheet off the die. The rebound has a significant influence on the final shape of the part. On the basis of the comparison of time relationship between the displacement of the sheet metal and the amplitude of electromagnetic force, the study about the rebound phenomenon in an electromagnetic V-bending experiment and its numerical simulation model is carried out in this paper. Collision promotes deformation process, resulting in a drastic change of sheet geometry in which a new distribution of electromagnetic force helps the part to fit the die. The attenuation of force caused by distance increase is comparatively weak when forming into a shallow die, so that the electromagnetic force maintains enough intensity which can effectively suppress the rebound and help to calibrate the V-Shape of the part. Increasing the duration of coil current pulse helps to suppress rebound effect of sheet metal when forming into a shallow die

    Measuring the Discrepancy between 3D Geometric Models using Directional Distance Fields

    Full text link
    Qualifying the discrepancy between 3D geometric models, which could be represented with either point clouds or triangle meshes, is a pivotal issue with board applications. Existing methods mainly focus on directly establishing the correspondence between two models and then aggregating point-wise distance between corresponding points, resulting in them being either inefficient or ineffective. In this paper, we propose DirDist, an efficient, effective, robust, and differentiable distance metric for 3D geometry data. Specifically, we construct DirDist based on the proposed implicit representation of 3D models, namely directional distance field (DDF), which defines the directional distances of 3D points to a model to capture its local surface geometry. We then transfer the discrepancy between two 3D geometric models as the discrepancy between their DDFs defined on an identical domain, naturally establishing model correspondence. To demonstrate the advantage of our DirDist, we explore various distance metric-driven 3D geometric modeling tasks, including template surface fitting, rigid registration, non-rigid registration, scene flow estimation and human pose optimization. Extensive experiments show that our DirDist achieves significantly higher accuracy under all tasks. As a generic distance metric, DirDist has the potential to advance the field of 3D geometric modeling. The source code is available at \url{https://github.com/rsy6318/DirDist}

    The Influence of COVID-19 on Community Disaster Resilience

    Get PDF
    Global pandemics, such as the Coronavirus Disease 2019 (COVID-19), have serious harmful effects on people′s physical health and mental well-being. It is imperative therefore that we seek to understand community resilience and identify ways to enhance this, especially within our cities and communities. Therefore, great emphasis is now placed on how cities prepare for and recover from such disasters, and community resilience has emerged as a key consideration. Drawing upon research on the theory of resilience, this study seeks to identify the factors that influence community resilience and to analyze their causation toward helping to manage the risks associated with the COVID-19 pandemic. Seventeen factors from the five dimensions of social capital, economic capital, physical environment, demographic characteristics, and institutional factors are used to construct an index system. This is used to establish the structural level and importance of each factor. Data were collected using a questionnaire survey involving 12,000 members of key community groups in the city of Wuhan. An interpretative structural model (ISM) combining the analytic hierarchy process (AHP) method was then used to obtain the multi-level hierarchical structure composed of direct factors, indirect factors, and fundamental factors. The results show that the income level, vulnerability of the population, and the built environment are the main factors that affect the resilience of communities affected by COVID-19. These findings provide useful guidance toward the effective planning and design of urban construction and infrastructure. The results are expected to be useful to inform future decision-making and toward the long term, sustainable management of the risks posed by COVID-19

    Whole-genome resequencing reveals genetic diversity and selection characteristics of dairy goat

    Get PDF
    The dairy goat is one of the earliest dairy livestock species, which plays an important role in the economic development, especially for developing countries. With the development of agricultural civilization, dairy goats have been widely distributed across the world. However, few studies have been conducted on the specific characteristics of dairy goat. In this study, we collected the whole-genome data of 89 goat individuals by sequencing 48 goats and employing 41 publicly available goats, including five dairy goat breeds (Saanen, Nubian, Alpine, Toggenburg, and Guanzhong dairy goat; n = 24, 15, 11, 6, 6), and three goat breeds (Guishan goat, Longlin goat, Yunshang Black goat; n = 6, 15, 6). Through compared the genomes of dairy goat and non-dairy goat to analyze genetic diversity and selection characteristics of dairy goat. The results show that the eight goats could be divided into three subgroups of European, African, and Chinese indigenous goat populations, and we also found that Australian Nubian, Toggenburg, and Australian Alpine had the highest linkage disequilibrium, the lowest level of nucleotide diversity, and a higher inbreeding coefficient, indicating that they were strongly artificially selected. In addition, we identified several candidate genes related to the specificity of dairy goat, particularly genes associated with milk production traits (GHR, DGAT2, ELF5, GLYCAM1, ACSBG2, ACSS2), reproduction traits (TSHR, TSHB, PTGS2, ESR2), immunity traits (JAK1, POU2F2, LRRC66). Our results provide not only insights into the evolutionary history and breed characteristics of dairy goat, but also valuable information for the implementation and improvement of dairy goat cross breeding program

    Construction and Characterization of a Chimeric Virus (BIV/HIV-1) Carrying the Bovine Immunodeficiency Virus \u3ci\u3egag\u3c/i\u3e-\u3ci\u3epol\u3c/i\u3e Gene: Research Letters

    Get PDF
    HIV-1HXB2 5′LTR region, most of BIVR29 gag-pol segment and HIV-1HXB2 pol IN-3′LTR region were respectively amplified. A chimeric clone, designated as pHBIV3753, was constructed by cloning three fragments sequentially into pUC18. MT4 cells were transfected with pHBIV3753. The replication and expressions of the chimeric virus (HBIV3753) were monitored by RT activity and IFA. The results firstly demonstrated that it is possible to generate a new type of the BIV/HIV-1 chimeric virus containing BIV gag-pol gene

    Clinical value of auditory nerve enhancement in idiopathic sudden sensorineural hearing loss: a retrospective study

    Get PDF
    BackgroundThe pathogenesis of idiopathic sudden sensorineural hearing loss remains unclear, and no substantial breakthroughs have been achieved in its treatment. Therefore, we conducted this study with the aim to investigate the clinical features and prognostic factors of patients with idiopathic sudden sensorineural hearing loss and auditory nerve enhancement by using three-dimensional fluid-attenuated inversion recovery (3D-FLAIR) magnetic resonance imaging (MRI) of the inner ear.MethodsWe retrospectively analyzed the clinical data of adult patients, who experienced sudden unilateral deafness and were admitted to the Department of Otolaryngology, Shandong Provincial ENT Hospital, between December 2020 and July 2021. Patients were divided into an auditory nerve enhancement group and a normal inner ear group, according to 3D-FLAIR MRI findings. Differences in sex, age, side, disease course, underlying diseases, dizziness/vertigo, vestibular function, degree of deafness, hearing classification, and treatment efficacy were analyzed.ResultsOf the 112 cases of sudden idiopathic deafness, 16.07% exhibited enhancement of the auditory nerve on inner-ear 3D-FLAIR MRI. Statistically significant differences in the degree and type of hearing loss were detected between the two groups (p < 0.05). The rates of abnormal results in the caloric, vestibular-evoked myogenic potential, and video head impulse tests were higher in the auditory nerve enhancement group. The cure rate (11.1%) in patients with auditory nerve enhancement was lower than that in patients with normal inner ear MRI findings (28.7%); however, the difference was not statistically significant.ConclusionFindings from 3D-FLAIR MRI scans of the inner ear indicated that patients with sudden deafness and auditory nerve enhancement experienced severe hearing loss, aggravated vestibular function injury, and a significantly decreased cure rate. Prompt treatment, ideally within 2 weeks of disease onset, can facilitate hearing recovery

    Evaluation of Humanitarian Supply Chain Resilience in Flood Disaster

    No full text
    Frequent natural hazards such as flooding and the devastating consequences of severe events make the humanitarian supply chain particularly important in alleviating the suffering of those communities impacted by such events. However, the ambiguity of information and the different goals of stakeholders demand that the humanitarian supply chain must be resilient. This research adopts the use of literature review and expert opinions to identify the indicators that affect the resilience of the humanitarian supply chain using the flood event in Hechuan District, China in 2020 as an example. Based on the combination of fuzzy Decision-making Trial and Evaluation Laboratory and Analytic Network Process (fuzzy-DEMATEL-ANP), the interrelationships between the indicators and the weights of each indicator are calculated. The research results indicate that decision-makers in the humanitarian supply chain should vigorously coordinate the cooperation among stakeholders, ensure the effective transmission of information, and formulate forward-looking strategic plans. At the same time, these key decision makers should also be aware of the need to adjust their strategies at different stages of the flooding event in order to achieve a flexible humanitarian supply chain that responds to the varying demands over the course of a flooding event. The results of this study will help professionals involved in humanitarian supply chains to develop strategies and plans to become more resilient thus helping to reduce losses from natural hazards such as floods

    Sound attenuation optimization using metaporous materials tuned on exceptional points

    No full text
    International audienceA metamaterial composed of a set of periodic rigid resonant inclusions embedded in a porous lining is investigated to enhance the sound attenuation in an acoustic duct at low frequencies. A transmission loss peak is observed on the measurements and corresponds to the crossing of the lower two Bloch modes of an infinite periodic material. Numerical parametric studies show that the optimum modal attenuation can be achieved at the exceptional point in the parameter plane of inclusion position and frequency, where the two lower modes merge
    • …
    corecore