9 research outputs found

    Combining deep learning with 3D stereophotogrammetry for craniosynostosis diagnosis

    Get PDF
    Craniosynostosis is a condition in which cranial sutures fuse prematurely, causing problems in normal brain and skull growth in infants. To limit the extent of cosmetic and functional problems, swift diagnosis is needed. The goal of this study is to investigate if a deep learning algorithm is capable of correctly classifying the head shape of infants as either healthy controls, or as one of the following three craniosynostosis subtypes; scaphocephaly, trigonocephaly or anterior plagiocephaly. In order to acquire cranial shape data, 3D stereophotographs were made during routine pre-operative appointments of scaphocephaly (n = 76), trigonocephaly (n = 40) and anterior plagiocephaly (n = 27) patients. 3D Stereophotographs of healthy infants (n = 53) were made between the age of 3-6 months. The cranial shape data was sampled and a deep learning network was used to classify the cranial shape data as either: healthy control, scaphocephaly patient, trigonocephaly patient or anterior plagiocephaly patient. For the training and testing of the deep learning network, a stratified tenfold cross validation was used. During testing 195 out of 196 3D stereophotographs (99.5%) were correctly classified. This study shows that trained deep learning algorithms, based on 3D stereophotographs, can discriminate between craniosynostosis subtypes and healthy controls with high accuracy

    Anatomical Variation in Diaphragm Thickness Assessed with Ultrasound in Healthy Volunteers

    Get PDF
    Ultrasonography of the diaphragm in the zone of apposition has become increasingly popular to evaluate muscle thickness and thickening fraction. However, measurements in this anatomical location are frequently hindered by factors that constrain physical accessibility or that alter diaphragm position. Therefore, other anatomical positions at the chest wall for transducer placement are used, but the variability in diaphragm thickness across the dome has not been systematically studied. The aim of this study was to evaluate anatomical variation of diaphragm thickness in 46 healthy volunteers on three ventrodorsal lines and two craniocaudal positions on these three lines. The intraclass correlation coefficient (ICC) for diaphragm thickness in the craniocaudal direction on the mid-axillary line was significantly higher than those on the posterior axillary and midclavicular lines, suggesting it had the lowest variability (ICCmidaxillary = .89, 95% confidence interval [CI]: 0.83–0.93, ICCposterior axillary = 0.74, 95% CI: 0.62–0.85, ICCmidclavicular = 0.62, 95% CI: 0.43–0.47, p < 0.05). Average diaphragm thickness was comparable on the posterior axillary and midaxillary lines and substantially larger on the midclavicular line (1.24 mm [1.06–1.47], 1.27 mm [1.10–1.42] and 2.32 [1.97–2.70], p < 0.01). We conclude that the normal diaphragm has a large variability in thickness, especially in the ventrodorsal direction. Variability in craniocaudal position is the lowest at the midaxillary line, which therefore appears to be the preferred site for diaphragm thickness measurement

    Positive end-expiratory pressure affects geometry and function of the human diaphragm

    No full text
    Positive end-expiratory pressure (PEEP) is routinely applied in mechanically ventilated patients to improve gas exchange and respiratory mechanics by increasing end-expiratory lung volume (EELV). In a recent experimental study in rats, we demonstrated that prolonged application of PEEP causes diaphragm remodeling, especially longitudinal muscle fiber atrophy. This is of potential clinical importance, as the acute withdrawal of PEEP during ventilator weaning decreases EELV and thereby stretches the adapted, longitudinally atrophied diaphragm fibers to excessive sarcomere lengths, having a detrimental effect on force generation. Whether this series of events occurs in the human diaphragm is unknown. In the current study, we investigated if short-term application of PEEP affects diaphragm geometry and function, which are prerequisites for the development of longitudinal atrophy with prolonged PEEP application. Nineteen healthy volunteers were noninvasively ventilated with PEEP levels of 2, 5, 10, and 15 cmH2O. Magnetic resonance imaging was performed to investigate PEEP-induced changes in diaphragm geometry. Subjects were instrumented with nasogastric catheters to measure diaphragm neuromechanical efficiency (i.e., diaphragm pressure normalized to its electrical activity) during tidal breathing with different PEEP levels. We found that increasing PEEP from 2 to 15 cmH2O resulted in a caudal diaphragm displacement (19 [14-26] mm, P < 0.001), muscle shortening in the zones of apposition (20.6% anterior and 32.7% posterior, P < 0.001), increase in diaphragm thickness (36.4% [0.9%-44.1%], P < 0.001) and reduction in neuromechanical efficiency (48% [37.6%-56.6%], P < 0.001). These findings demonstrate that conditions required to develop longitudinal atrophy in the human diaphragm are present with the application of PEEP.NEW & NOTEWORTHY We demonstrate that PEEP causes changes in diaphragm geometry, especially muscle shortening, and decreases in vivo diaphragm contractile function. Thus, prerequisites for the development of diaphragm longitudinal muscle atrophy are present with the acute application of PEEP. Once confirmed in ventilated critically ill patients, this could provide a new mechanism for ventilator-induced diaphragm dysfunction and ventilator weaning failure in the intensive care unit (ICU)
    corecore