1,409 research outputs found

    Sources of variations in total column carbon dioxide

    Get PDF
    Observations of gradients in the total CO_2 column, (CO2), are expected to provide improved constraints on surface fluxes of CO_2. Here we use a general circulation model with a variety of prescribed carbon fluxes to investigate how variations in (CO_2) arise. On diurnal scales, variations are small and are forced by both local fluxes and advection. On seasonal scales, gradients are set by the north-south flux distribution. On synoptic scales, variations arise due to large-scale eddy-driven disturbances of the meridional gradient. In this case, because variations in (CO_2) are tied to synoptic activity, significant correlations exist between (CO_2) and dynamical tracers. We illustrate how such correlations can be used to describe the north-south gradients of (CO_2) and the underlying fluxes on continental scales. These simulations suggest a novel analysis framework for using column observations in carbon cycle science

    Kinetics and Products of the Acid-Catalyzed Ring-Opening of Atmospherically Relevant Butyl Epoxy Alcohols

    Get PDF
    Epoxydiols are produced in the gas phase from the photo-oxidation of isoprene in the absence of significant mixing ratios of nitrogen oxides (NO_x). The reactive uptake of these compounds onto acidic aerosols has been shown to produce secondary organic aerosol (SOA). To better characterize the fate of isoprene epoxydiols in the aerosol phase, the kinetics and products of the acid-catalyzed ring-opening reactions of four hydroxy-substituted epoxides were studied by nuclear magnetic resonance (NMR) techniques. Polyols and sulfate esters are observed from the ring-opening of the epoxides in solutions of H_2SO_4/Na_2SO_4. Likewise, polyols and nitrate esters are produced in solutions of HNO_3/NaNO_3. In sulfuric acid, the rate of acid-catalyzed ring-opening is dependent on hydronium ion activity, sulfate ion, and bisulfate. The rates are much slower than the nonhydroxylated equivalent epoxides; however, the hydroxyl groups make them much more water-soluble. A model was constructed with the major channels for epoxydiol loss (i.e., aerosol-phase ring-opening, gas-phase oxidation, and deposition). In the atmosphere, SOA formation from epoxydiols will depend on a number of variables (e.g., pH and aerosol water content) with the yield of ring-opening products varying from less than 1% to greater than 50%

    Synthesis of the Southeast Atmosphere Studies: Investigating Fundamental Atmospheric Chemistry Questions

    Get PDF
    The Southeast Atmosphere Studies (SAS), which included the Southern Oxidant and Aerosol Study (SOAS); the Southeast Nexus (SENEX) study; and the Nitrogen, Oxidants, Mercury and Aerosols: Distributions, Sources and Sinks (NOMADSS) study, was deployed in the field from 1 June to 15 July 2013 in the central and eastern United States, and it overlapped with and was complemented by the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) campaign. SAS investigated atmospheric chemistry and the associated air quality and climate-relevant particle properties. Coordinated measurements from six ground sites, four aircraft, tall towers, balloon-borne sondes, existing surface networks, and satellites provide in situ and remotely sensed data on trace-gas composition, aerosol physicochemical properties, and local and synoptic meteorology. Selected SAS findings indicate 1) dramatically reduced NOx concentrations have altered ozone production regimes; 2) indicators of “biogenic” secondary organic aerosol (SOA), once considered part of the natural background, were positively correlated with one or more indicators of anthropogenic pollution; and 3) liquid water dramatically impacted particle scattering while biogenic SOA did not. SAS findings suggest that atmosphere–biosphere interactions modulate ambient pollutant concentrations through complex mechanisms and feedbacks not yet adequately captured in atmospheric models. The SAS dataset, now publicly available, is a powerful constraint to develop predictive capability that enhances model representation of the response and subsequent impacts of changes in atmospheric composition to changes in emissions, chemistry, and meteorology

    Isoprene photooxidation : new insights into the production of acids and organic nitrates

    Get PDF
    We describe a nearly explicit chemical mechanism for isoprene photooxidation guided by chamber studies that include time-resolved observation of an extensive suite of volatile compounds. We provide new constraints on the chemistry of the poorly-understood isoprene δ-hydroxy channels, which account for more than one third of the total isoprene carbon flux and a larger fraction of the nitrate yields. We show that the cis branch dominates the chemistry of the δ-hydroxy channel with less than 5% of the carbon following the trans branch. The modelled yield of isoprene nitrates is 12±3% with a large difference between the δ and β branches. The oxidation of these nitrates releases about 50% of the NOx. Methacrolein nitrates (modelled yield ≃15±3% from methacrolein) and methylvinylketone nitrates (modelled yield ≃11±3% yield from methylvinylketone) are also observed. Propanone nitrate, produced with a yield of 1% from isoprene, appears to be the longest-lived nitrate formed in the total oxidation of isoprene. We find a large molar yield of formic acid and suggest a novel mechanism leading to its formation from the organic nitrates. Finally, the most important features of this mechanism are summarized in a condensed scheme appropriate for use in global chemical transport models

    Unwarranted Variations in the Quality of Health Care: Can the Law Help Medicine Provide a Remedy/Remedies?

    Get PDF
    This article reviews the essential findings of studies of variations in quality of care according to three categories of care: effective care, preference-sensitive care, and supply-sensitive care. It argues that malpractice liability and informed consent laws should be based on standards of practice that are appropriate to each category of care. In the case of effective care, the legal standard should be that virtually all of those in need should receive the treatment, whether or not it is currently customary to provide it. In the case of preference-sensitive care, the law should recognize the failure of the doctrine of informed consent to assure that patient preferences are respected in choice of treatment; we suggest that the law adopt a standard of informed patient choice in which patients are invited, not merely to consent to a recommended treatment, but to choose the treatment that best advances their preferences. In the case of supply-sensitive care, we suggest that physicians who seek to adopt more conservative patterns of practice be protected under the “respectable minority” or “two schools of thought” doctrine

    Quantifying sources and sinks of reactive gases in the lower atmosphere using airborne flux observations

    Get PDF
    Atmospheric composition is governed by the interplay of emissions, chemistry, deposition, and transport. Substantial questions surround each of these processes, especially in forested environments with strong biogenic emissions. Utilizing aircraft observations acquired over a forest in the southeast U.S., we calculate eddy covariance fluxes for a suite of reactive gases and apply the synergistic information derived from this analysis to quantify emission and deposition fluxes, oxidant concentrations, aerosol uptake coefficients, and other key parameters. Evaluation of results against state-of-the-science models and parameterizations provides insight into our current understanding of this system and frames future observational priorities. As a near-direct measurement of fundamental process rates, airborne fluxes offer a new tool to improve biogenic and anthropogenic emissions inventories, photochemical mechanisms, and deposition parameterizations

    Identification of OSSO as a near-UV absorber in the Venusian atmosphere

    Get PDF
    The planet Venus exhibits atmospheric absorption in the 320–400 nm wavelength range produced by unknown chemistry. We investigate electronic transitions in molecules that may exist in the atmosphere of Venus. We identify two different S_2O_2 isomers, cis-OSSO and trans-OSSO, which are formed in significant amounts and are removed predominantly by near-UV photolysis. We estimate the rate of photolysis of cis- and trans-OSSO in the Venusian atmosphere and find that they are good candidates to explain the enigmatic 320–400 nm near-UV absorption. Between 58 and 70 km, the calculated OSSO concentrations are similar to those of sulfur monoxide (SO), generally thought to be the second most abundant sulfur oxide on Venus

    Kinetics of reactions of ground state nitrogen atoms (^4S_(3/2)) with NO and NO_2

    Get PDF
    The discharge flow technique has been used with resonance fluorescence detection of N atoms to study the fast radical-radical reaction of ground state nitrogen atoms (^4S_(3/2)) with NO and NO_2. The rate constants obtained are (in units of cm^3 molecule^(−1) s^(−1)) k_1 = (2.2±0.2) × 10^(−11) exp[(160±50)/T] in the temperature range 213 K ≤ T ≤ 369 K for N + NO → N_2 + O and k_2 = (5.8±0.5) × 10^(−12) exp [(220±50)/T] in the temperature range 223 K ≤ T ≤ 366 K for N + NO_2 → N_2O + O. The reported error limits are at the 95% confidence level. The reaction kinetics are consistent with other radical-radical reactions, essentially no enthalpic barrier is observed. Substitution of the measured rate of R_1 for the value recommended hi the latest Jet Propulsion Laboratory compendium [DeMore et al., 1992] results in a small change in the concentration of ozone predicted in a two-dimensional photochemical model. Modeled ozone concentrations are higher (approximately 1%) in the high-latitude upper stratosphere as a result of a 3–10% reduction in the calculated concentrations of NO_y

    Tropospheric methane retrieved from ground-based near-IR solar absorption spectra

    Get PDF
    High-resolution near-infrared solar absorption spectra recorded between 1977 and 1995 at the Kitt Peak National Solar Observatory are analyzed to retrieve column abundances of methane (CH_4), hydrogen fluoride (HF), and oxygen (O_2). Employing a stratospheric “slope equilibrium” relationship between CH_4 and HF, the varying contribution of stratospheric CH_4 to the total column is inferred. Variations in the CH_4 column due to changes in surface pressure are determined from the O_2 column abundances. By this technique, CH_4 tropospheric volume mixing ratios are determined with a precision of ∼0.5%. These display behavior similar to Mauna Loa in situ surface measurements, with a seasonal peak-to-peak amplitude of approximately 30 ppbv and a nearly linear increase between 1977 and 1983 of 18.0 ± 0.8 ppbv yr^(−1), slowing significantly after 1990
    corecore