7 research outputs found

    In-Situ Synthesized Si@C Materials for the Lithium Ion Battery: A Mini Review

    No full text
    As an important component, the anode determines the property and development of lithium ion batteries. The synthetic method and the structure design of the negative electrode materials play decisive roles in improving the property of the thus-assembled batteries. Si@C compound materials have been widely used based on their excellent lithium ion intercalation capacity and cyclic stability, in which the in-situ synthetic method can make full use of the structural advantages of the monomer itself, thus improving the electrochemical performance of the anode material. In this paper, the different preparation technologies and composite structures of Si@C compound materials by in-situ synthesis are introduced. The research progress of Si@C compound materials by in-situ synthesis is reviewed, and the prospect of future development of Si@C compound materials has been tentatively commented

    POSS-Derived Synthesis and Full Life Structural Analysis of Si@C as Anode Material in Lithium Ion Battery

    No full text
    Polyhedral oligomeric silsesquioxane (POSS)-derived Si@C anode material is prepared by the copolymerization of octavinyl-polyhedral oligomeric silsesquioxane (octavinyl-POSS) and styrene. Octavinyl-polyhedral oligomeric silsesquioxane has an inorganic core (-Si8O12) and an organic vinyl shell. Carbonization of the core-shell structured organic-inorganic hybrid precursor results in the formation of carbon protected Si-based anode material applicable for lithium ion battery. The initial discharge capacity of the battery based on the as-obtained Si@C material Si reaches 1500 mAh g−1. After 550 charge-discharge cycles, a high capacity of 1430 mAh g−1 was maintained. A combined XRD, XPS and TEM analysis was performed to investigate the variation of the discharge performance during the cycling experiments. The results show that the decrease in discharge capacity in the first few cycles is related to the formation of solid electrolyte interphase (SEI). The subsequent rise in the capacity can be ascribed to the gradual morphology evolution of the anode material and the loss of capacity after long-term cycles is due to the structural pulverization of silicon within the electrode. Our results not only show the high potential of the novel electrode material but also provide insight into the dynamic features of the material during battery cycling, which is useful for the future design of high-performance electrode material
    corecore